Abstract:
This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
Abstract:
An inspection apparatus including: a substrate holder configured to hold a substrate; an aperture device; and an optical system configured to direct a first measurement beam of radiation onto the substrate, the first measurement beam having a first intensity distribution, and configured to direct a second focusing beam of radiation onto the substrate at a same time as the first measurement beam is directed on the substrate, the second focusing beam having a second intensity distribution, wherein at least part of the second intensity distribution is spatially separated from the first intensity distribution at least at the substrate and/or the aperture device.
Abstract:
An objective lens system having a high numerical aperture, a large working distance, and low optical aberrations over a wide spectral band of wavelengths is disclosed. The objective lens system includes a first lens group, a second lens group, and a third lens group. The first lens group includes first and second positive meniscus lenses that are positioned at a distance from each other along an optical axis of the objective lens system. The distance may be dependent on a focal length of the objective lens system. The second lens group includes first and second meniscus lenses and a bi-convex lens. The third lens group includes a bi-concave lens and a doublet lens.
Abstract:
To measure a surface state, reflective CARS is suitable in terms of the signal intensity. However, with the reflective CARS, it has been difficult to identify the surface position because the shape information is not acquired. Thus, a reflective CARS microscope is combined with a high-resolution phase sensor. The surface position is identified with the phase sensor, and reflected CARS generated from the surface is detected, so that composition analysis is performed.
Abstract:
A high sensitivity image sensor comprises an epitaxial layer of silicon that is intrinsic or lightly p doped (such as a doping level less than about 1013 cm−3). CMOS or CCD circuits are fabricated on the front-side of the epitaxial layer. Epitaxial p and n type layers are grown on the backside of the epitaxial layer. A pure boron layer is deposited on the n-type epitaxial layer. Some boron is driven a few nm into the n-type epitaxial layer from the backside during the boron deposition process. An anti-reflection coating may be applied to the pure boron layer. During operation of the sensor a negative bias voltage of several tens to a few hundred volts is applied to the boron layer to accelerate photo-electrons away from the backside surface and create additional electrons by an avalanche effect. Grounded p-wells protect active circuits as needed from the reversed biased epitaxial layer.
Abstract:
A microparticle measuring apparatus for highly accurately detecting the position of a microparticle flowing through a flow channel includes a light irradiation unit for irradiating a microparticle flowing through a flow channel with light, and a scattered light detection unit for detecting scattered light from the microparticle, including an objective lens for collecting light from the microparticle, a light splitting element for dividing the scattered light from the light collected by the objective lens, into first and second scattered light, a first scattered light detector for receiving an S-polarized light component, and an astigmatic element disposed between the light splitting element and the first scattered light detector, and making the first scattered light astigmatic. A relationship between a length L from a rear principal point of the objective lens to a front principal point of the astigmatic element, and a focal length f of the astigmatic element satisfies the following formula I. 1.5f≦L≦2.5f (I)
Abstract:
A diagnostic system for measuring temperature, pressure, CO2 concentration and H2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO2 concentration based on the temperatures derived from H2O vapor concentration. A probe for sampling CO2 and H2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.
Abstract:
A method of inspecting a defect present at a surface portion of a photomask blank having at least one thin film formed on a substrate by use of the inspecting optical system. The method includes setting the distance between the defect and an objective lens of an inspecting optical system to a defocus distance, applying inspection light to the defect through the objective lens, collecting reflected light from the region irradiated with the inspection light, through the objective lens, as a magnified image, identifying a light intensity variation portion of the magnified image, and determining the rugged shape of the defect on the basis of a variation in light intensity of the light intensity variation portion of the magnified image.
Abstract:
In an optical inspection tool, an illumination aperture is opened at each of a plurality of aperture positions of an illumination pupil area one at a time across the illumination pupil area. For each aperture opening position, an incident beam is directed towards the illumination pupil area so as to selectively pass a corresponding ray bundle of the illumination beam at a corresponding set of one or more incident angles towards the sample and an output beam, which is emitted from the sample in response to the corresponding ray bundle of the incident beam impinging on the sample at the corresponding set of one or more incident angles, is detected. A defect detection characteristic for each aperture position is determined based on the output beam detected for each aperture position. An optimum aperture configuration is determined based on the determined defect detection characteristic for each aperture position.
Abstract:
Technologies are generally described for fabrication of a multi-component device, and employment thereof. The device may include a substrate, and a multitude of light sources and one or more photo detectors positioned on a surface of the substrate. The light sources may be configured to illuminate at least a portion of an object with light, and the photo detectors may be configured to detect reflected light from the object in response to the illumination. In some examples, the reflected light may be analyzed to determine a spectral profile of the object. The device may further include a structure applied to the substrate adjacent to the photo detectors, where the structure may be configured to reduce direct light transmission from the light sources to the photo detectors. The structure may include a deposited material, a protrusion, and/or a recession on the surface of the substrate, for example.