Abstract:
Systems and methods are disclosed for manufacturing a CMOS-MEMS device (100). A partial protective layer (401) is deposited on a top surface of a layered structure to cover a circuit region. A first partial etch is performed from the bottom side of the layered structure to form a first gap (501) below a MEMS membrane (207) within a MEMS region of the layered structure. A second partial etch is performed from the top side of the layered structure to remove a portion of a sacrificial layer between the MEMS membrane and a MEMS backplate (215) within the MEMS region. The second partial etch releases the MEMS membrane so that it can move in response to pressures. The deposited partial protective layer prevents the second partial etch from etching a portion of the sacrificial layer positioned within the circuit region of the layered structure and also prevents the second partial etch from damaging the CMOS circuit component (211).
Abstract:
According to an embodiment of a semiconductor device, the semiconductor device includes a micro-mechanical structure and a semiconductor material arranged over the micro-mechanical structure. A side surface of the semiconductor material includes a first region and a second region. The first region has an undulation, and the second region is a peripheral region of the side surface and decreases towards the micro-mechanical structure.
Abstract:
In one embodiment, a method of forming an out-of-plane electrode includes forming an oxide layer above an upper surface of a device layer, etching an etch stop perimeter defining trench extending through the oxide layer, forming a first cap layer portion on an upper surface of the oxide layer and within the etch stop perimeter defining trench, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the deposited first material portion, and vapor releasing a portion of the oxide layer with the etch stop portion providing a lateral etch stop.
Abstract:
A microelectromechanical system (MEMS) is comprised of a micromirror device attached to a semiconductor device. A first spacer layer is formed and patterned to form hinge via openings. A hinge metal is deposited above the first spacer layer to form the hinge and the hinge vias. A capping layer is formed above the hinge metal and hinge vias. A second spacer layer is formed above the capping layer and patterned to form a mirror via. The capping layer protects the hinge metal from the developer solution used in the patterning step. The capping layer is removed from within the mirror via opening. Another metal layer is deposited above the second spacer layer to form the mirror and the mirror via.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
MEMS devices and methods for forming the same are provided. A first metal interconnect structure is formed on a first semiconductor substrate to connect to a CMOS control circuit in the first semiconductor substrate. A bonding layer having a cavity is formed on the first metal interconnect structure, and then bonded with a second semiconductor substrate. A conductive plug passes through a first region of the second semiconductor substrate, through the bonding layer, and on the first metal interconnect structure. A second metal interconnect structure includes a first end formed on the first region of the second semiconductor substrate, and a second end connected to the conductive plug. Through-holes are disposed through a second region of the second semiconductor substrate and through a top portion of the bonded layer that is on the cavity to leave a movable electrode to form the MEMS device.
Abstract:
MEMS structures and methods utilizing a locker film are provided. In an embodiment a locker film is utilized to hold and support a moveable mass region during the release of the moveable mass region from a surrounding substrate. By providing additional support during the release of the moveable mass, the locker film can reduce the amount of undesired movement that can occur during the release of the moveable mass, and preventing undesired etching of the sidewalls of the moveable mass.
Abstract:
At the first etching step of etching an SOI substrate from a first silicon layer side, a portion of a first structure formed of the first silicon layer is formed as a pre-structure having a larger shape than a final shape. At the mask formation step of forming a final mask on a second silicon layer side of the SOI substrate, a first mask corresponding to the final shape of the first structure is formed in the pre-structure. At the second etching step of etching the SOI substrate from the second silicon layer side, the second silicon layer and the pre-structure are, using the first mask, etched to form the final shape of the first structure.
Abstract:
An apparatus (36) includes a motion amplification structure (52), an actuator (54), and a sense electrode (50) in proximity to the structure (52). The actuator (54) induces an axial force (88) upon the structure (52), which causes a relatively large amount of in-plane motion (108) in one or more beams (58, 60) of the structure (52). When sidewalls (98) of the beams (58, 60) exhibit a skew angle (28), the in-plane motion (108) of the beams (58, 60) produces out-of-plane motion (110) of a paddle element (62) connected to the end of the beams (58, 60). The skew angle (28), which results from an etch process, defines a degree to which the sidewalls (98) of beams (58, 60) are offset or tilted from their design orientation. The out-of-plane motion (110) of element (62) is sensed at the electrode (50), and is utilized to determine an estimated skew angle (126).
Abstract:
A MEMS device is formed by forming a sacrificial layer over a substrate and forming a first metal layer over the sacrificial layer. Subsequently, the first metal layer is exposed to an oxidizing ambient which oxidizes a surface layer of the first metal layer where exposed to the oxidizing ambient, to form a native oxide layer of the first metal layer. A second metal layer is subsequently formed over the native oxide layer of the first metal layer. The sacrificial layer is subsequently removed, forming a released metal structure.