Abstract:
A system (1) for optically determining a concentration of a substance of interest, e.g. glucose, in a body fluid. The system (1) comprises a probe head (2) adapted to be positioned in direct contact with a body fluid to be analysed, e.g. subcutaneously, in a blood vessel or in direct contact with a sample. The probe head (2) defines an analysis volume (5) which is at least partly delimited towards the body fluid by a semi-permeable membrane (6) allowing substances of interest to enter the analysis volume (5). The system (1) further comprises first light guiding means (7) arranged for guiding primary light (9) to the analysis volume (5), and second light guiding means (8) arranged for guiding secondary light (11) away from the analysis volume (5). The primary light (9) is scattered, preferably Raman scattered, and the scattered spectrum is used for determining the concentration of the substance of interest.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
This analyzer comprises a photoirradiation portion simultaneously photoirradiating a plurality of storage vessels storing a plurality of measurement samples respectively and a plurality of photodetection portions detecting a plurality of light components resulting from simultaneous photoirradiation on the plurality of storage vessels storing the plurality of measurement samples respectively. The photoirradiation portion includes a light source, a first light guide portion branching light emitted from the light source into a plurality of light components and guiding the plurality of light components to the plurality of measurement samples respectively and a second light guide portion branching light emitted from the light source into a plurality of light components and guiding the plurality of light components to the plurality of measurement samples respectively.
Abstract:
A method for producing a multilayer tissue phantom involves successively forming at least two layers, each layer formed by depositing a viscous flowable material over a supporting element or over a previously formed layer of the phantom supported by the supporting element, selectively redistributing the material while material is solidifying to control a thickness distribution of the layer, and allowing the material to solidify sufficiently to apply a next layer. The supporting element supports the material in 2 or 3 directions and effectively molds a lumen of the tissue. The neighbouring layers are of different composition and of chosen thickness to provide desired optical properties and mechanical properties of the phantom. The phantom may have selected attenuation and backscattering properties to mimic tissues for optical coherence tomography imaging.
Abstract:
A downhole fluid sample container includes a fluid sample container detachably coupled to a downhole sub, the fluid sample container having an internal chamber for receiving the downhole fluid. At least one semimetal (for example, silicon or germanium) window is coupled to the fluid sample container, the window being substantially transparent to electromagnetic energy wavelengths within a selected band. A method includes transmitting electromagnetic energy from an electromagnetic energy source to downhole fluid through at least one semimetal window in a container, receiving an electromagnetic energy response with a spectrometer, and estimating the downhole fluid property based at least in part on the electromagnetic energy response.
Abstract:
An optical interrogation system and a method are described herein that enable the interrogation of one or more biosensors which can be located within the wells of a microplate. In one embodiment, the optical interrogation system has a tunable laser, N-fiber launches, N-lenses and N-detectors that are set-up to interrogate N-biosensors. In another embodiment, the optical interrogation system has a tunable laser, N-fiber launches, N+1 lenses and N-detectors that are set-up to interrogate N-biosensors.
Abstract:
The present technology relates generally to fibre optic cables their manufacture and uses in the field of optical measurements including biochemical laboratory instrumentation for measuring properties of samples on microtitration plates and corresponding sample supports. The technology has also applications in various laser technologies. A fibre optic cable has an active surface with a determined form provided at a first optical interface at the first end of the cable. The first end of the cable is fused into an exemplary circular form, the fused cable end including fibre ends both within the active surface and outside the active surface. At the opposite, second end of the cable, those fibres which have their first ends at the determined active surface area, are used for forming a second optical interface. It is possible to have high transmission efficiency in optical interfaces where other than circular cross section of the light beam exists.
Abstract:
Fourier domain a/LCI (faLCI) system and method which enables in vivo data acquisition at rapid rates using a single scan. Angle-resolved and depth-resolved spectra information is obtained with one scan. The reference arm can remain fixed with respect to the sample due to only one scan required. A reference signal and a reflected sample signal are cross-correlated and dispersed at a multitude of reflected angles off of the sample, thereby representing reflections from a multitude of points on the sample at the same time in parallel. Information about all depths of the sample at each of the multitude of different points on the sample can be obtained with one scan on the order of approximately 40 milliseconds. From the spatial, cross-correlated reference signal, structural (size) information can also be obtained using techniques that allow size information of scatterers to be obtained from angle-resolved data.
Abstract:
The present invention relates to a method and system of array imaging that extends or maximizes the longevity of the sensor array by minimizing the effects of photobleaching. The imaging system has a light source, a variable exposure aperture, and a variable filter system. The system extends the longevity of sensors by (1) using the variable exposure aperture to selectively expose sections of the sensor array containing representative numbers of each type of sensor, and/or (2) using the variable filter system to control the intensity of the excitation light, providing only the intensity required to induce the appropriate excitation and increasing that intensity over time as necessary to counteract the effects of photobleaching.
Abstract:
A fluid conduit comprises an inner conduit configured for conducting a fluid, and an outer conduit circumferentially enclosing the inner conduit. The outer conduit's inner diameter is larger than the inner conduit's outer diameter, with an interspace being formed between the inner conduit's outer surface and the outer conduit's inner surface. The interspace between the inner conduit's outer surface and the outer conduit's inner surface contains an interspace liquid. The inner conduit is configured for guiding light coupled into the inner conduit, and dependent on the light's angle of incidence, total reflection occurs at a boundary between the inner conduit's outer surface and the interspace between the inner conduit and the outer conduit.