Abstract:
A display device is provided. The display device includes a light engine having light emitting components mounted to a flexible circuit board having a flexible graphite substrate. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the light emitting components for improved cooling of the heat generated by the light emitting component and surrounding devices.
Abstract:
A flexible circuit board having a flexible graphite substrate is provided. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. Electronic components are mounted to the flexible circuit board to form a circuit arrangement. A thermally conductive conduit can be disposed in thermal and physical contact with a surface of the electronic component and the surface of the flexible graphite substrate to. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the electronic components for improved cooling of the heat generating electronic component and surrounding devices.
Abstract:
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Abstract:
A circuit board includes a substrate, a patterned copper layer, a phosphorous-containing electroless plating palladium layer, an electroless plating palladium layer and an immersion plating gold layer. The patterned copper layer is disposed on the substrate. The phosphorous-containing electroless plating palladium layer is disposed on the patterned copper layer, wherein in the phosphorous-containing electroless plating palladium layer, a weight percentage of phosphorous is in a range from 4% to 6%, and a weight percentage of palladium is in a range from 94% to 96%. The electroless plating palladium layer is disposed on the phosphorous-containing electroless plating palladium layer, wherein in the electroless plating palladium layer, a weight percentage of palladium is 99% or more. The immersion plating gold layer is disposed on the electroless plating palladium layer.
Abstract:
A sputtering target for forming protective film according to the invention is used to form protective film on one surface or both surfaces of a Cu wiring film, and includes 8.0 to 11.0% by mass of Al, 3.0 to 5.0% by mass of Fe, 0.5 to 2.0% by mass of Ni and 0.5 to 2.0% by mass of Mn with a remainder of Cu and inevitable impurities. In addition, a laminated wiring film includes a Cu wiring film and protective film formed on one surface or both surfaces of the Cu wiring film, and the protective film is formed by using the above sputtering target.
Abstract:
A sensing system includes an inductor-capacitor-resistor (LCR) resonator sensor having a substrate, a plurality of first sensing elements mutually spaced apart and disposed on the substrate, and a sensing material film being disposed on a first sensing region of the corresponding first sensing element.
Abstract:
The present disclosure relates to a method for manufacturing a printed circuit board. The method includes the steps as follows. First, a substrate including a base layer and a copper foil layer on a surface of the base layer is provided. Second, a conductive layer is formed on portions of the copper foil layer. Third, portions of the copper foil layer exposed from the conductive layer are removed by an etching process, and the conductive layer is thinner by the etching process. The reserved portions of the copper foil layer and the conductive layer forms a conductive pattern to obtain a printed circuit board without plating wires. A printed circuit board without plating wires made by the above method is also provided.
Abstract:
A printed circuit board is disclosed having a substrate with an insulating layer, aluminum foil layers disposed on both sides of the insulating layer, and a through-hole formed in the insulating layer and aluminum foil layers. A metal layer is disposed over an exposed surface of the insulating layer positioned along an inner surface of the through-hole. A zinc film is positioned on a surface of the aluminum foil. A metal film is disposed over the zinc film. A plating film is disposed on a surface of the metal film. A circuit pattern is etched through the aluminum foil and the plating film.
Abstract:
A conducting film or device electrode includes a substrate and two transparent or semitransparent conductive layers separated by a transparent or semitransparent intervening layer. The intervening layer includes electrically conductive pathways between the first and second conductive layers to help reduce interfacial reflections occurring between particular layers in devices incorporating the conducting film or electrode.
Abstract:
A stress-reduced circuit board includes an insulating substrate, and first and second electrically conductive layers which are stacked one upon the other, and which respectively have peripheral marginal regions that are configured in a stepped arrangement. The first electrically conductive layer is configured to have an area dimension larger than that of the second electrically conductive layer and a thickness not greater than that of the second electrically conductive layer so as to minimize stress caused by a difference in coefficients of thermal expansion between the insulating substrate and the first and second electrically conductive layers.