Abstract:
Various embodiments of an interposer for mounting a semiconductor die, as well as methods for forming the interposer, are disclosed. The interposer includes flexible solder pad elements that are formed from a core material of the interposer, such that the interposer may absorb thermally induced stresses and conform to warped or uneven surfaces. Embodiments of electronic device packages including a semiconductor die mounted to and electrically connected to the interposer, as well as methods for forming the electronic device packages, are also disclosed. In one electronic device package, the semiconductor die is electrically connected to the interposer with wire bonds attached to a routing layer of the interposer. In another electronic device package, the semiconductor die is electrically connected to the interposer by bonding the semiconductor die to the flexible solder pad elements of the interposer in a flip-chip configuration. A computer system incorporating an electronic device package with an interposer according to the present invention is also disclosed.
Abstract:
A high impedance surface and a method of making same. The surface includes a molded structure having a repeating pattern of holes therein and a repeating pattern of sidewall surfaces, the holes penetrating the structure between first and second major surfaces thereof and the sidewall surfaces joining the first major surface. A metal layer is put on said molded structure, the metal layer being in the holes, covering at least a portion of the second major surface, covering the sidewalls and portions of the first major surface to interconnect the sidewalls with other sidewalls via the metal layer on the second major surface and in the holes.
Abstract:
A molding pin for a metal die is prevented from breaking, solder is surely deposited, and thus, a circuit pitch can be reduced to the limit. On the front plane of a circuit board, prescribed circuit patterns made of a conductive material are formed, and on the rear plane, prescribed circuit patterns are also formed. On the circuit board, a through hole is formed to carry electricity between the circuit patterns on both planes. The inner shape of the through hole is narrow in a direction between the adjacent circuit patterns and wide in a circuit extending direction.
Abstract:
A package substrate has a substrate body on which an electronic component is mounted. The substrate body is formed at its top or back surface with a diamond film, a diamond-like carbon film or a carbon film.
Abstract:
A high impedance surface and a method of making same. The surface includes a molded structure having a repeating pattern of holes therein and a repeating pattern of sidewall surfaces, the holes penetrating the structure between first and second major surfaces thereof and the sidewall surfaces joining the first major surface. A metal layer is put on said molded structure, the metal layer being in the holes, covering at least a portion of the second major surface, covering the sidewalls and portions of the first major surface to interconnect the sidewalls with other sidewalls via the metal layer on the second major surface and in the holes.
Abstract:
A circuit film having film bumps is provided for a film package. An IC chip is mechanically joined and electrically coupled to the circuit film through the film bumps instead of conventional chip bumps. In a fabrication method, a base film is partially etched by a laser to create an etched area that defines raised portion relatively raised from the etched area. Then a circuit pattern is selectively formed on the base film, partly running over the raised portions. The raised portion and the overlying circuit pattern constitute the film bumps having a height not greater than the height of the circuit film.
Abstract:
A multilayer interconnection board is disclosed that allows reliable electrical connection between an interconnection having a large width and a large area and a via provided in a via hole formed by pressing a tool against resin. A projecting portion for electrical connection is formed integrally with the insulating member and in a second interconnection groove having a width and an area greater than those of a first interconnection groove. While a first interconnection is being deposited in the first interconnection groove and a second interconnection is being deposited in the second interconnection groove, the projecting portion is formed in the second interconnection groove and a metal plating film is provided on the projecting portion at the same time, so as to electrically connect the second interconnection with the via.
Abstract:
A display including a display panel, a circuit board and a tape carrier package structure is provided. The circuit board is disposed at the display panel. The tape carrier package structure includes a substrate having an opening, a plurality of leads, a chip, and a blocking bar. The substrate is between the display panel and the circuit board. A plurality of leads, each having an inner lead and outer lead, are disposed around the opening on the substrate. A portion of the outer leads is electrically connected to the display panel, and another portion is electrically connected to the circuit board. The chip has a plurality of contact points, and is disposed at the opening of the substrate. The contact points are electrically connected to the inner leads. Moreover, the blocking bar is disposed on the substrate between the chip and the display panel.
Abstract:
A method of making an interposer having an array of contact structures for making temporary electrical contact with the leads of a chip package. The contact structures may make contact with the leads substantially as close as desired to the body of the chip package. Moreover, the contact structures can be adapted for making contact with leads having a very fine pitch. In a first embodiment, the contact structures include raised members formed over a body of the interposer. A conductive layer is formed over each of the raised members to provide a contact surface for engaging the leads of the chip package. In another embodiment, the raised members are replaced with depressions formed into the interposer. A conductive layer is formed on an inside surface of each depression to provide a contact surface for engaging the leads of the chip package. Moreover, any combination of raised members and depressions may be used.
Abstract:
The present invention is related to a substrate structure and a method for fabricating the substrate, and more particularly to a substrate structure of integrated embedded passive components and a method for fabricating the substrate. In the present invention, the openings are formed on the substrate by removing part of external circuit layer and part of dielectric layer. Then, the embedded components are disposed in these openings. Therefore, the shift and short circuit of the passive components caused by the flow and gather of the solder paste in reflow or other high-temperature processes can be improved.