Abstract:
A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
Abstract:
An electrical connector comprised of a plurality of electrical contacts arranged in a stair-step configuration designed to mate with electrical components having electrical contacts arranged in a stair-step configuration. A direct connect signaling system comprised of stair-step electrical connectors mated to stair-step printed circuit boards, other stair-step electrical components, or combinations thereof.
Abstract:
Provided circuit modules employ flexible circuitry populated with integrated circuitry (ICs). The flex circuitry is disposed about a rigid substrate. Contacts distributed along the flexible circuitry provide connection between the module and an application environment. A strain relief portion of the flex circuitry has preferably fewer layers than the portion of the flex circuitry along which the integrated circuitry is disposed and may further may exhibit more flexibility than the portion of the flex circuit populated with integrated circuitry. The substrate form is preferably devised from thermally conductive materials.
Abstract:
Flexible circuitry is populated with integrated circuitry disposed along one or both of its major sides. Contacts distributed along the flexible circuitry provide connection between the module and an application environment. The circuit-populated flexible circuitry is disposed about an edge of a rigid substrate thus placing the integrated circuitry on one or both sides of the substrate with one or two layers of integrated circuitry on one or both sides of the substrate. The substrate form is preferably devised from thermally conductive materials and includes a high thermal conductivity core or area that is disposed proximal to higher thermal energy devices such as an AMB when the flex circuit is brought about the substrate. Other variations include thermally-conductive clips that grasp respective ICs on opposite sides of the module to further shunt heat from the ICs. Preferred extensions from the substrate body or substrate core encourage reduced thermal variations amongst the integrated circuits of the module.
Abstract:
A low insertion force multichip in-line module comprises: a substantially rigid frame; a flex circuit having a plurality of integrated circuit chips disposed thereon, the flex circuit having contacts at least partially exposed along one edge of the frame; and, a compliant layer disposed between the exposed flex circuit and the rigid frame, whereby controlled deformation of the compliant layer enhances electrical continuity between the contacts and corresponding external electrical pins. Alternatively, a low insertion force multichip in-line module comprises: a substantially rigid frame; a flex circuit having a plurality of integrated circuit chips disposed thereon, the flex circuit having contacts at least partially exposed along one edge of the frame; a socket configured to matably engage the module; and, a compliant layer disposed between the exposed flex circuit and the rigid frame, whereby controlled deformation of the compliant layer enhances electrical continuity between the contacts and corresponding external electrical pins.
Abstract:
An electrical connector comprised of a plurality of electrical contacts arranged in a stair-step configuration designed to mate with electrical components having electrical contacts arranged in a stair-step configuration. A direct connect signaling system comprised of stair-step electrical connectors mated to stair-step printed circuit boards, other stair-step electrical components, or combinations thereof.
Abstract:
The semiconductor module includes a heat spreader, two semiconductors that include circuitry, a termination resistor, an array of electrical contact points, and a plurality of electrically conductive leads. The semiconductors are thermally coupled to the heat spreader. The terminator resistor is electrically coupled to the circuitry of at least one of the semiconductors. The array of electrical contact points are coupled to the heat spreader. The conductive leads are electrically connected to the semiconductors and the array of electrical contact points. At least one of the leads is common to both of the semiconductors.
Abstract:
The semiconductor module includes a heat spreader, first and second sets of two semiconductors that include circuitry and are thermally coupled to the heat spreader, first and second termination resistors, and first and second sets of electrically conductive leads. The first termination resistor is coupled to the circuitry at the first set of semiconductors, while the second termination resistor is coupled to the circuitry of the second set of semiconductors. The first set of leads connect to the first set of semiconductors and has at least one lead that is common to both of the semiconductors of the first set of semiconductors. The second set of leads connect to the second set of semiconductors and has at least one lead that is common to both of the semiconductors of the second set of semiconductors.
Abstract:
A circuit module is provided in which two secondary substrates or cards or the rigid portions of a rigid flex assembly are populated with integrated circuits (ICs). The secondary substrates are connected with flexible circuitry. One side of the flexible circuitry exhibits contacts adapted for connection to an edge connector. The flexible circuitry is wrapped about an edge of a preferably metallic substrate to dispose one of the two secondary substrates on a first side of the substrate and the other of the secondary substrates on the second side of the substrate.
Abstract:
Memory module flex circuitry is devised to accommodate packaged integrated circuit devices (ICs) of varying heights or thicknesses. The invention may be employed to advantage in a variety of modules that employ flex circuitry including, but not limited to, fully-buffered, registered or more simple memory modules. Many such modules may replace conventionally-constructed DIMMs without change to the system in which the module is employed. Regions of the flex circuitry devised to provide one or more mounting locales for ICs are delineated, in part, from the main body of the flex circuit. The delineation may be implemented in a preferred embodiment by separating a designated IC mounting area or peninsula from the main body of the flex circuitry either with isolating areas or separations or with tabs that extend from the primary perimeter of the flex circuitry.