Abstract:
A multilayer printed circuit board (PCB) includes a substrate; a ground layer having edges which define a gap portion, the ground layer being provided on a bottom face of the substrate; and at least two signal traces and provided on a top face of the substrate so as to straddle the gap portion and so as to be substantially parallel to each other. The multilayer PCB also includes at least one ground trace provided between the at least two signal traces and on the top face of the substrate so as to straddle the gap portion.
Abstract:
A printed circuit board has separate first, second and third sections arranged in a predetermined direction. A connector is mounted at the first section. A noise cut filter is mounted at the second section and connected to the connector. An electronic circuit component is mounted at the third section and connected to the noise cut filter. An electrically conductive power source layer is formed within the printed circuit board at a position outside a peripheral section adjacent the second section. The noise cut filter is allowed to operate without receiving any influence of noise from the power source layer. Noise is sufficiently removed at the noise cut filter. Noise is suppressed to the utmost in electric signals in the connector. Radiation of noise is reliably reduced at the connector. Electromagnetic interference can be suppressed.
Abstract:
A wiring board comprising: a plate core having a first main surface and a second main surface; conductor layers including a conductor line; dielectric layers laminated alternately with said conductor layers on at least one of said first and second main surfaces; via conductors as defined herein; a signal through-hole as defined herein; a signal through-hole conductor as defined herein; a first path end pad as defined herein; a second path end pad as defined herein; a shield through-hole as defined herein; and a shield through-hole conductor as defined herein; wherein: a signal transmission path is formed as defined herein; at least one of said conductor layers is disposed on each of said first and second main surface sides; said surface conductor on said first main surface side and said conductor line form a strip line, a microstrip line, or a coplanar waveguide with constant characteristic impedance Z0; an inner surface of said shield through-hole is covered with said shield through-hole conductor; and an interaxis distance between said signal through-hole conductor and said shield through-hole conductor is adjusted as defined herein.
Abstract:
A wiring board is disclosed that includes a first insulating layer, a conductor which is formed on a surface of the first insulating layer, and a second insulating layer which is formed on surfaces of the first insulating layer and of the conductor. The wiring board is provided with a semispherical-shaped or conical-shaped hole-forming portion which penetrates through the second insulating layer into the conductor.
Abstract:
The present invention provides a partially completed wiring circuit board assembly sheet capable of preventing deposition of a plating metal on the surface of a metal sheet, even when pinholes are produced in an insulating layer for insulating a lead wire for electroplating from a metal sheet. The assembly sheet 100 of the present invention has a metal sheet 1, multiple wiring circuit board forming area 1A in compartments on the metal sheet and area 1B for forming a lead wire for electroplating, which is in compartment on the metal sheet 1. Each area 1A has a partially completed wiring circuit board 10. The partially completed wiring circuit board 10 is equipped with a base insulating layer 2, a wiring pattern 3 and a cover insulating layer 4. In the area 1B, a first insulating layer 12, a lead wire 13 for electroplating and a second insulating layer 14 are laminated in this order. Of the metal sheet 1, an opening 16 is formed in the part under the lead wire 13.
Abstract:
A head supporting mechanism having a structure for connecting a first end of a suspension side wire, the other end thereof being connected to a magnetic head of a disk apparatus, to a circuit of a disk device via a flexible circuit board is provided, without using solder containing lead so that the both are easily disconnected during repair. A tail terminal (2) provided at the one end of the suspension side wire is disposed to be in surface-contact with a bonding pad (1) of the flexible circuit board (10) and bonded to the latter via a gold ball (6).
Abstract:
A circuitized substrate which includes a plurality of contiguous open segments which define facing edge portions within an electrically conductive layer to isolate separate portions of the conductive layer such that the layer can be used for different functions, e.g., as both power and ground elements, within a product (e.g., electrical assembly) which includes the substrate as part thereof. A method of making the substrate, an electrical assembly utilizing the substrate, a multilayered circuitized assembly also utilizing the substrate and an information handling system, e.g., a mainframe computer, are also provided.
Abstract:
Interconnecting substrates used in the manufacturing of microelectronic devices and printed circuit assemblies, packaged microelectronic devices having interconnecting substrates, and methods of making and using such interconnecting substrates. In one aspect of the invention, an interconnecting substrate comprises a first external layer having a first external surface, a second external layer having a second external surface, and a conductive core between the first and second external layers. The conductive core can have at least a first conductive stratum between the first and second external layers, and a dielectric layer between the first conductive stratum and one of the first or second external layers. The conductive core can also include a second conductive stratum such that the first conductive stratum is on a first surface of the dielectric layer and the second conductive stratum is on a second surface of the dielectric layer. The interconnecting substrate also has at least one vent through at least one of the first conductive stratum, the second conductive stratum, and/or the dielectric layer. The vent is configured to direct moisture away from the dielectric layer, and thus the vent can be a moisture release element that allows moisture to escape from the dielectric layer during high temperature processing.
Abstract:
A flexible printed wiring board has a configuration which is equipped with a solder resist portion formed by coating through the use of a screen printing method on a region including a component mounting portion of a conductor pattern, and a cover lay film pasted in such a manner that an outer circumference portion of an opening portion overlaps an upper portion of a circumference portion of the solder resist portion A manufacturing method of a flexible printed wiring board of the invention has a configuration which is equipped with a conductor pattern forming process, a solder resist forming process, and a cover lay film pasting process.