Abstract:
A light emitting apparatus is disclosed for medical applications including photo-dynamic-therapy (PDT), photobiostimulation (photobiomodulation), photo-sterilization, and photo-curing. The light emitting apparatus comprises a plurality of semiconductor light emitting elements, preferably light emitting diodes (LEDs) to produce a high intensity light beam, and a liquid light guide for delivering the light beam from the light source to the treatment site.
Abstract:
This bolometric detector for electromagnetic radiation comprises: a receiving antenna (1) intended for collecting electromagnetic radiation and thus ensuring electromagnetic coupling; a resistive load capable of converting the electromagnetic power collected into heating capacity; a thermometric element (4) connected to the receiving antenna (1) via the resistive load and thermally isolated from a support substrate (2), capable of accommodating an electronic circuit that includes means of electric excitation (stimuli) and means of pre-processing the electric signals generated by said detector. The receiving antenna (1) is itself isolated from the support substrate (2).
Abstract:
The present invention provides a photodetector for weak light that can prevent noise from impurities, prevent electrodes from disconnecting from the substrate, and can be easily cooled; the present invention further provides a photodetector for weak light that can count the number of photons; the present invention solves the above problems by using an ultraviolet light transparent substrate on the photodetector for weak light.
Abstract:
A method of visually detecting a leak of a chemical emanating from a component. The method includes: aiming a passive infrared camera system towards the component; filtering an infrared image with an optical bandpass filter, the infrared image being that of the leak; after the infrared image passes through the lens and optical bandpass filter, receiving the filtered infrared image with an infrared sensor device; electronically processing the filtered infrared image received by the infrared sensor device to provide a visible image representing the filtered infrared image; and visually identifying the leak based on the visible image. The passive infrared camera system includes: a lens; a refrigerated portion including therein the infrared sensor device and the optical bandpass filter (located along an optical path between the lens and the infrared sensor device). At least part of a pass band for the optical bandpass filter is within an absorption band for the chemical.
Abstract:
Optical detector components in a fiber-optic communication system are temperature stabilized. The optical detector components may be part of an optical amplifier, a receiver, or other optical device. A temperature-controlled housing may be used to stabilize the temperature of a photodiode and/or a transimpedance amplifier of the optical detector. The housing may additionally be used to stabilize the temperature of the coils of a fiber optic amplifier and possibly other components.
Abstract:
There is disclosed an optical radiation sensor system. The system includes a sensor device and a cleaning device. The sensor device detects and responds to radiation from a radiation field and includes a surface that is movable with respect to the radiation field between a first position in which the surface is in the radiation field and a second position in which at least a portion of the surface is out of the radiation field. The cleaning device operates to remove fouling materials from at least a portion of the surface in the second position. The cleaning device may be a chemical cleaning device, a mechanical cleaning device or a combined chemical/mechanical device.
Abstract:
A method and apparatus for mounting an optical sensor in an optical instrument. The optical sensor is attached to a rigid substrate. The substrate has two locator holes, with the sensor mounted between the holes. Rigid locator pins attached to the housing of the instrument protrude into the locator holes. A spring pushing against the substrate forces the locator holes against corresponding locator pins, aligning the substrate within a plane. In a first embodiment, the holes are positioned so that the optical sensor is rigidly held at its midpoint, minimizing dimensional deviations along the length of the sensor with temperature change. The sensor assembly is easily removable and the mounting apparatus does not mechanically stress the substrate or the sensor with temperature changes. The mounting apparatus is easily manufactured, allows precise alignment, and is inexpensive.
Abstract:
A high efficiency integrating sphere that can be used in a large variety of scientific instruments. The sphere having an efficiency gain obtained by using a superconducting material, acting as a perfect reflector, on the inside hollow surface of the sphere. The sphere is operated with a delay between the incident and sensed light, heretofore not possible, and yielding substantial improvement in the signal-to noise ratio of the integrating sphere.
Abstract:
A punch press having a laser cutting device incorporated therein, including a laser cutting head, a laser generator spaced from the punch press, and a laser beam path adjusting device located between the laser generator and the cutting head is disclosed. More particularly, there is disclosed such a punch press further including a plurality axes, and including a plurality of bend mirrors to redirect the laser beam. Devices are provided for obtaining accurate central alignment and focussing of the beam.
Abstract:
A radiation sensor comprises a housing, a radiation filter, and a photocell positioned to sense radiation passing through the filter. Means are provided for receiving signals from the photocell indicative of radiation sensed by the photocell. In accordance with this invention, means are provided for hermetically sealing the filter and photocell from the exterior, and also for providing cooling (and optionally heating) of the filter and photocell to hold their respective temperatures below predetermined maximum levels, for improvement of sensing accuracy and operating life.