Abstract:
Disclosed is a movable body spectrum measuring apparatus, which is capable of discriminating an object being measured highly precisely by the photographic data regarding a spectrum sensor and is capable of processing the photographic data in real time. The movable body spectrum measuring apparatus discriminates the object being measured based on the spectrum data relating to the observation light detected by a spectrum sensor. The movable body spectrum measuring apparatus comprises a dictionary data storing unit for storing the spectrum data containing the wavelength information and the light intensity information of the object being measured, and a limitation information storing unit for storing limitation information to regulate the wavelength information into partial wavelength information. The movable body spectrum measuring apparatus further comprises a discrimination level setting unit for setting selectively the limitation information corresponding to the discrimination level required of the object being measured, a restricting unit for restricting the spectrum data regarding the observation light to the spectrum data composed exclusively of the wavelength information limited by the limitation information, and a discrimination unit for discriminating the object being measured based on the comparison between the restricted spectrum data and the spectrum data regarding the dictionary data storing unit.
Abstract:
The present invention relates to a spectral detection device (100) for detecting spectral components of received light, wherein the spectral detection device (100) comprises a filtering structure (110) arranged to filter the received light and output light with a wavelength within a predetermined wavelength range; and a light sensor (120) arranged to detect the light output by the filtering structure (110), wherein the filtering structure (110) is variable to allow a variation of the predetermined wavelength range over time.The arrangement enables a compact spectral detection device that may be provided at a low cost.
Abstract:
A system and method processes a structure comprising embedded material. The system includes a laser adapted to generate light and to irradiate an interaction region of the structure. The system further includes an optical system adapted to receive light from the interaction region and to generate a detection signal indicative of the presence of embedded material in the interaction region. The system further includes a controller operatively coupled to the laser and the optical system. The controller is adapted to receive the detection signal and to be responsive to the detection signal by selectively adjusting the laser.
Abstract:
The invention relates to controllable Fabry-Perot interferometers which are produced with micromechanical (MEMS) technology. Micromechanical interferometers of the prior art have a disadvantage of significantly attenuating infrared radiation. In the inventive solution there is a gap in at least one mirror, serving as a layer of the mirror. The other layers of the mirrors can be made of polycrystalline silicon, which has a negligible attenuation at the infrared range. It is also preferable to provide a hole or a recess in a substrate at the optical area of the interferometer.
Abstract:
The present invention provides systems and methods for measuring an analyte in a medium without exposing the medium to contamination. The systems and methods employ a novel combination of a small sensor device embedded in a Luer cap and capable of wirelessly transmitting data to a reading device.
Abstract:
A system for reducing effects relating to stretching of an optical fiber includes an optical control source, the optical source outputting an optical signal, a terahertz transmitter and receiver both being optically coupled to the optical source, and a means for providing the optical signal to both the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal. The means prevents the stretching of an fiber carrying the optical signal provided to the terahertz transmitter or terahertz receiver or allows for the stretching an optical fiber such that the terahertz receiver will still be synchronized to the terahertz transmitter by the optical signal.
Abstract:
A method of detecting oxygen and/or chemical content in a subject, comprising generating at least one spectral image of the subject; generating at least one spectral image of a reference object; comparing spectrum from the subject image to the reference image to thereby reveal the relative oxygen content of the subject. A system for determining the level of oxygenation of the blood of a subject body part comprising: a hyperspectral image generator for generating a plurality of spectral images; an image capture device for capturing the spectral images; a processor for generating hyperspectral image cubes such that the spectrum of the body part is extracted and normalized using the spectrum from the reference object to cancel out the spectral response of the light source and the imager; said processor comparing spectral from a subject image to reference images to thereby reveal the relative oxygen content of the subject.
Abstract:
A discrimination filtering device includes a filter and a filter having different pass bands, a detection unit, a processing unit, and a result output unit. The detection unit detects an electromagnetic wave from an object that is the target of identification through the filters. The pass band of the filters is designed to be suitable for object discrimination. The processing unit substitutes the output from the detection unit into a discrimination function determined based on the pass band of the filters and the teaching spectrum obtained in advance to infer the group which the object belongs to based on the substituted result.
Abstract:
Disclosed are methods useful for providing information useful in the diagnosis of gastrointestinal abnormalities as well as ingestible devices useful for providing information useful in the diagnosis of gastrointestinal abnormalities.
Abstract:
A Spectrometer is provided including a camera and an axial symmetric camera mount configured to receive the camera and to rotate. The spectrometer furthers include an input for providing optical radiation to a spectrometer system; a diffraction grating for dispersing the optical radiation along a prescribed plane; at least one lens for focusing wavelength-dispersed light onto at least one array of a detector of optical radiation, wherein the camera has at least one linear array of elements for detecting optical radiation; a mechanical housing, wherein the axial symmetric camera mount is configured to couple the camera to the mechanical housing; and a means for rotating the camera coupled to the mechanical housing about an axis. Related systems and methods are also provided.