Abstract:
A pixel structure having a cladding and tapered core waveguide, the core dimensioned to refract EM radiation through the cladding at differing depth dependent on the wavelength of the radiation, and a plurality of transducers disposed to convert the band of radiation they receive into electrical signals. In some embodiments the transducers are disposed within lateral waveguides, and in some embodiments below the tapered core waveguide. Further disclosed is an image array sensor comprising a plurality of such pixel structures. Further disclosed is an array comprising stacked layered waveguides having transducers disposed therewithin, and a plurality of refractors to refract different bands of EM radiation into differing waveguides.
Abstract:
A light source for near-infrared transmission and reflection spectroscopy can be constructed from a combination of a high power blue or blue-green light emitting diode (LED) and a phosphor element based on an inorganic material. The phosphor element absorbs the LED light and, in response to the LED excitation, emits luminescence that continuously covers the 700-1050 nm range. One possible material that can be used for such a near-infrared emitting phosphor element is a single crystal rod of Ti+3 doped Sapphire. An alternative near-infrared emitting phosphor material is a disk or rectangular shaped composite of Ti+3 doped Sapphire powder embedded in a clear optical epoxy or silicone encapsulant. Such a combination of a blue LED for excitation of a phosphor element that emits in a broad wavelength band has been widely used in white LEDs where the emission is in the 400-700 nm range.
Abstract:
A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
Abstract:
The present concept is a portable colour sensor for measuring colour of a substrate that includes a single flat printed circuit board with a top and bottom side which includes at least one LED light and one colour sensor and at least one light pipe receiving light from the LED and transmitting it onto a substrate at an angle theta. It also includes a tube frame including an optical tube for receiving light reflections from the substrate and directing the reflections to the colour sensor. The light pipes and the tube frame, are mounted and compression fit between the printed circuit board and a lower housing.
Abstract:
An electronic device may be provided with a display mounted in a housing. A color sensing ambient light sensor may measure the color of ambient light. The color sensing ambient light sensor may be mounted in alignment with an ambient light sensor window formed in an inactive area of the display. The color sensing ambient light sensor may be formed from detectors on a semiconductor substrate. The detectors may include detectors that have spectral sensitivity profiles matching those of color matching functions. The color sensing ambient light sensor may include an infrared light detector. Light redirecting structures such as a diffuser, prism film, negative lens film, or privacy film may be used in directing light into the ambient light sensor. The color sensing ambient light sensor may be calibrated by exposing the sensor to light sources of different types.
Abstract:
A method and apparatus for field spectroscopic characterization of seafood is disclosed. A portable NIR spectrometer is connected to an analyzer configured for performing a multivariate analysis of reflection spectra to determine qualitatively the true identities or quantitatively the freshness of seafood samples.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
Methods and apparatus for combining or separating spectral components by means of a polychromat. A polychromat is employed to combine a plurality of beams, each derived from a separate source, into a single output beam, thereby providing for definition of one or more of the intensity, color, color uniformity, divergence angle, degree of collimation, polarization, focus, or beam waist of the output beam. The combination of sources and polychromat may serve as an enhanced-privacy display and to multiplex signals of multiple spectral components. In other embodiments of the invention, a polychromat serves to disperse spectral components for spectroscopic or de-multiplexing applications.
Abstract:
Provided is a wavelength distribution measuring apparatus (24), which includes a diffuser plate (52) for dispersing light beams radiated from an object to be measured (11) and a light beam homogenizing optical element (53) for reflecting, by the side surface (53b), at least part of the light beams dispersed by the diffuser plate (52) so that the light beams approximate to the direction of the perpendicular of a light receiving surface and also for guiding the light beams to the light receiving surface, and an optical receiver (56) including a plurality of light receiving elements for detecting the light beams, the light receiving elements being different from one another in spectral sensitivity characteristic. With this configuration, substantially parallel light beams radiated from the object to be measured (11) are homogenized at the light receiving surface including the periphery of the light receiving surface.
Abstract:
Methods and apparatus for combining or separating spectral components by means of a polychromat. A polychromat is employed to combine a plurality of beams, each derived from a separate source, into a single output beam, thereby providing for definition of one or more of the intensity, color, color uniformity, divergence angle, degree of collimation, polarization, focus, or beam waist of the output beam. The combination of sources and polychromat may serve as an enhanced-privacy display and to multiplex signals of multiple spectral components. In other embodiments of the invention, a polychromat serves to disperse spectral components for spectroscopic or de-multiplexing applications.