Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
A method of analyzing the spectral signature of a point-like dynamic source event in order to approximate the location of the source event within a predetermined field of view is implemented by a spectral analysis system including (i) a data processing system; (ii) an imaging-sensor array communicatively linked to the data processing system and (iii) an optical system adapted for imaging a dispersion pattern of electromagnetic energy emitted from a source event onto the imaging-sensor array. A dispersion-pattern data set associating the optical system with data indicative of a set of pre-contrived electromagnetic-energy dispersion patterns attributed to the optical system is created based on at least one of (i) theoretically and (ii) experimentally determined characteristics of the optical system and maintained in computer memory. The data set includes at least one dispersion signature correlating a source-event location within a predetermined field of view with impingement positions upon the imaging-sensor array of a plurality of dispersed wavelengths. When polychromatic electromagnetic energy emitted from an event to be analyzed is passed through the optical system, the resulting dispersion pattern is registered at the imaging-sensor array and data indicative of the registered dispersion pattern is stored in computer memory. A spectral analysis algorithm co-orients a pre-stored dispersion signature with the registered dispersion pattern and approximates the location of the source event.
Abstract:
A spectroscopy system for high-accuracy, highly automated spectral imaging of a target is provided. Video and spectrometry information are obtained via an integrated video, spectrometry and distance sensing platform and processed by a computer. The processed video and spectrometry information are presented in real-time on an integrated display, with a graphical representation of the actual ground instantaneous field of view of the spectrometer sensor overlaid directly onto the video image of the target to provide real-time target aiming information, thus enabling the operator to rapidly optimize spectral data acquisition.
Abstract:
Optical systems that provide for simultaneous images and spectra from an object, such as a tissue sample, an industrial object such as a computer chip, or any other object that can be viewed with an optical system such as a microscope, endoscope, telescope or camera. In some embodiments, the systems provide multiple images corresponding to various desired wavelength ranges within an original image of the object, as well as, if desired, directional pointer(s) that can provide both an identification of the precise location from which a spectrum is being obtained, as well as enhancing the ability to point the device.
Abstract:
A multi-spectral detector for use in a passive/active system and a method for use in identifying an object in a field of view are disclosed. The multi-spectral detection system comprises an optically dispersive element, a detector array, and an integrated circuit. The optically dispersive element is capable of separating received LADAR radiation and radiation received from a scene into a plurality of spectral components and distributing the separated spectral components; and a detector array. The detector array includes a plurality of detectors capable of detecting the LADAR radiation; and a plurality of detectors capable of detecting the spectral components of the scene radiation. The integrated circuit is capable of generating a plurality of electrical signals representative of predetermined characteristics of the detected LADAR radiation and the detected spectral components. The method comprises passively detecting scene radiation employing a detector array; and actively detecting LADAR radiation through the detector array in parallel with passively detecting the scene radiation.
Abstract:
A disc serving as a spatial radiation modulator has dispersed radiation filters thereon. Each filter has a transmittance or reflectance modulation function of the form sin2(m&thgr;+p&pgr;/4), where m is a positive integer and p has one of the four values 0, 1, 2, 3. A radiation beam including selected wavelength components is diffracted into an elongated image dispersed according to wavelength. Different wavelength components are focused onto different filters on the modulator and are encoded by correspond filters. Since the modulation functions of the filters are orthogonal to one another, it is possible to extract the amplitude of each wavelength component after it has been encoded or modulated by corresponding filter from the total detected signal during one measurement.
Abstract translation:用作空间辐射调制器的盘在其上具有分散的辐射滤波器。 每个滤波器具有形式为sin 2(mθta+ ppi / 4)的透射率或反射调制函数,其中m是正整数,p具有四个值0,1,2,3中的一个。一种辐射束包括 选择的波长分量被衍射成根据波长分散的细长图像。 不同的波长分量聚焦在调制器上的不同滤波器上,并由相应的滤波器编码。 由于滤波器的调制功能彼此正交,因此可以在一次测量期间从总检测信号对相应的滤波器进行编码或调制之后提取每个波长分量的振幅。
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
A two dimensional color pattern which at each point has a definite and unique color value is reproduced on a measurement surface by way of a computer controlled display device for the optical marking of a target region on the measurement surface captured by a color measuring device. The color measuring device is aimed at the measurement surface and the color value of the target region captured by the color measuring device is measured. The coordinates of the target region on the measurement surface are calculated from the measured color value and an optical marker which visually indicates the location of the target region on the measurement surface is reproduced at that location on the measurement surface as defined by the calculated coordinates of the target region. Alignment of the color measurement device is simplified and made possible without the need for laser pointers or cameras.
Abstract:
A robotically controlled steerable gimbal mounted virtual broadband hyperspectral sensor system and methods provide a highly mobile, rapidly responsive and innovative system of locating targets and exploiting hyperspectral and ultraspectral imaging and non-imaging signature information in real-time from an aircraft or ground vehicles from overhead or standoff perspective in order to discriminate and identify unique spectral characteristics of the target. The system preferably has one or more mechanically integrated hyperspectral sensors installed on a gimbal backbone and co-boresighted with a similarly optional mounted color video camera and optional LASER within an aerodynamically stable pod shell constructed for three-dimensional stabilization and pointing of the sensor on a direct overhead or off-nadir basis.