-
公开(公告)号:US1746083A
公开(公告)日:1930-02-04
申请号:US11892026
申请日:1926-06-28
Applicant: BAUSCH & LOMB
Inventor: KURTZ HENRY F
IPC: G01J3/14
CPC classification number: G01J3/14
-
公开(公告)号:US1526504A
公开(公告)日:1925-02-17
申请号:US38337120
申请日:1920-05-22
Applicant: ISAAC RABI ISIDOR
Inventor: ISAAC RABI ISIDOR
IPC: G01J3/14
CPC classification number: G01J3/14 , Y10T16/209
-
公开(公告)号:US20240272000A1
公开(公告)日:2024-08-15
申请号:US18441765
申请日:2024-02-14
Inventor: Stephen Eikenberry , Rodrigo Amezcua-Correa , Daniel Cruz-Delgado , Stephanos Yerolatsitis , Matthew Cooper , Miguel A. Bandres
CPC classification number: G01J3/2823 , G01J3/0218 , G01J3/14
Abstract: A sensor may include one or more photonic lanterns, each including a waveguide structure with a single input waveguide at an input end and two or more output waveguides at an output end, where the two or more output waveguides of each of the one or more photonic lanterns are optically decoupled. A distribution of intensities of light exiting two or more output waveguides of each of the one or more photonic lanterns may correspond to a modal decomposition of input light coupled into the input waveguide of the corresponding one of the one or more photonic lanterns. The sensor may further include one or more spectrometers coupled to the two or more output waveguides of the one or more photonic lanterns to provide a wavelength-resolved modal decomposition of the input light.
-
174.
公开(公告)号:US20240180428A1
公开(公告)日:2024-06-06
申请号:US18438144
申请日:2024-02-09
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C1/00 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/12 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/42 , G01J3/453 , G01M3/38 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/95 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , H01S3/00 , H01S3/067 , H01S3/30
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7203 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61C19/04 , G01J3/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G16H40/67 , G16Z99/00 , A61B5/0024 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , A61C1/0046 , G01J2003/104 , G01J2003/1208 , G01J3/1838 , G01J2003/2826 , G01M3/38 , G01N2021/3513 , G01N2021/3595 , G01N2021/399 , G01N21/85 , G01N21/9508 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , H01S3/0092 , H01S3/06758 , H01S3/302 , Y02A90/10
Abstract: An optical system comprises a wearable device for measuring one or more physiological parameters. The physiological parameters may change in response to stretching of the hand or movement of fingers or thumb of the user, or the parameters may be related to blood constituents or blood flow. The wearable device comprises a light source with a plurality of semiconductor diodes and a detection system that measures reflected light from tissue comprising skin. The semiconductor diodes may be light emitting diodes or laser diodes. The signal to noise ratio for the output signal may be improved by synchronizing the detection system to the light source, increasing light intensity of at least one of the plurality of semiconductor diodes from an initial light intensity, and using change detection that compares light on versus light off for the detection system output. The wearable device is also configured to identify an object.
-
公开(公告)号:US11965779B2
公开(公告)日:2024-04-23
申请号:US17763957
申请日:2020-10-28
Applicant: TimeGate Instruments Oy
Inventor: Lauri Kurki , Ilkka Alasaarela , Jussi Tenhunen
CPC classification number: G01J3/44 , G01J3/0208 , G01J3/0218 , G01J3/0297 , G01J3/14 , G01J3/1895 , G01J3/26 , G01J2003/262
Abstract: An apparatus for measuring time-resolved optical spectrum includes a light source, a sensor for collecting, forming, manipulating and measuring the intensity of the optical radiation, and a controller coupled to the light source and sensor. The sensor includes at least one optical delay element to provide a time delay to a first portion of the optical radiation. The sensor arrangement further includes an optical spectral disperser to split the delayed first portion and the second portion of the optical radiation into dispersed radiation having a plurality of wavelengths, and a sensor element configured to receive each wavelength of the dispersed radiation on a different spatial region, and measure the light intensity associated with each wavelength of the dispersed radiation. The controller collects the light intensity associated with each wavelength of the dispersed radiation measured by the sensor element to form a time-resolved optical spectrum.
-
176.
公开(公告)号:US11821791B1
公开(公告)日:2023-11-21
申请号:US17850201
申请日:2022-06-27
Applicant: VIAVI SOLUTIONS INC.
Inventor: Driss Touahri , Christopher Russell Wagner , Luis Andre Neves Paiva Fernandes , Joshua Benjamin Julius Philipson
CPC classification number: G01J3/28 , G01J3/021 , G01J3/0208 , G01J3/14 , G01J3/18 , G01J2003/1208
Abstract: A monochromator apparatus for an optical spectrum analyzer may include a diffraction grating, a rotatable oblique prism reflector element with a non-right-angle apex angle, and a mirror. An input optical beam received from an input component may be diffracted by the grating element and reflected by a reflector element, where the reflector element may include a rotatable oblique prism with an apex angle that is different from a right angle. A mirror may reflect the reflected diffracted optical beam back to the reflector element and the grating element. An output optical beam from the grating element may be provided via an output element to a detection element for high resolution optical measurement. The oblique prism reflector element may reduce or eliminate a Littrow ghost effect or secondary ghost effects caused by the grating element.
-
177.
公开(公告)号:US20230277065A1
公开(公告)日:2023-09-07
申请号:US18118013
申请日:2023-03-06
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , G01J3/10 , G01J3/28 , G01J3/14 , G01J3/453 , G01J3/42 , G01J3/02 , G01N21/35 , G16H40/67 , G01N21/359 , A61B5/145 , G01N33/15 , G01N33/49 , G01N21/3563 , G01N21/39 , G01N33/02 , G01N33/44 , G01N21/88 , A61B5/1455 , G16Z99/00 , A61C19/04 , G01N21/3504
CPC classification number: A61B5/0088 , A61B5/0075 , G01J3/108 , G01J3/28 , G01J3/14 , G01J3/453 , G01J3/42 , A61B5/7257 , G01J3/0218 , G01N21/35 , G16H40/67 , G01N21/359 , A61B5/0013 , A61B5/0022 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/4547 , G01N33/15 , G01N33/49 , G01J3/2823 , G01N21/3563 , G01N21/39 , G01N33/02 , G01N33/442 , G01N21/88 , A61B5/6801 , A61B5/7405 , A61B5/742 , G01N33/025 , A61B5/1455 , G16Z99/00 , A61B5/7203 , A61C19/04 , G01J3/02 , G01N21/3504 , G01N2201/129 , H01S3/302
Abstract: A measurement system comprising one or more semiconductor diodes configured to penetrate tissue comprising skin. The detection system comprising a camera, which may also include a direct or indirect time-of-flight sensor. The detection system synchronized to the pulsing of the semiconductor diodes, and the camera further coupled to a processor. The detection system non-invasively measuring blood within the skin, measuring hemoglobin absorption between 700 to 1300 nm, and the processor deriving physiological parameters and comparing properties between different spatial locations and variation over time. The semiconductor diodes may comprise vertical cavity surface emitting lasers, and the detection system may comprise single photon avalanche photodiodes. The measurement system may be used to observe eye parameters and differential blood flow. The system may be used with photo-bio-modulation therapy, or it may be used in advanced driver monitoring systems for multiple functions including head pose, eye tracking, facial authentication, and smart restraint control systems.
-
公开(公告)号:US20230221106A1
公开(公告)日:2023-07-13
申请号:US18121164
申请日:2023-03-14
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Tomofumi Suzuki , Kyosuke Kotani , Tatsuya Gugimoto , Yutaka Kuramoto , Katsumi Shibayama , Noburo Hosokawa
IPC: G01B9/02 , G01J3/45 , G01J3/02 , B81B3/00 , G02B27/14 , G02B26/08 , G02B7/182 , G01J3/10 , G01J3/14 , G01J3/453
CPC classification number: G01B9/02051 , G01J3/45 , G01J3/0202 , G01J3/021 , B81B3/00 , G02B27/144 , B81B3/0021 , B81B3/007 , G02B26/0816 , G02B7/182 , G01J3/108 , G01J3/0237 , G01B9/02049 , G02B26/0833 , G01J3/14 , G02B26/0841 , G01B2290/35 , G01J3/4532 , G01B2290/25 , B81B2203/0154 , G01J3/4535 , G01J2003/104 , B81B2201/042
Abstract: In an optical device, a base and a movable unit are constituted by a semiconductor substrate including a first semiconductor layer, an insulating layer, and a second semiconductor layer in this order from one side in a predetermined direction. The base is constituted by the first semiconductor layer, the insulating layer, and the second semiconductor layer. The movable unit includes an arrangement portion that is constituted by the second semiconductor layer. The optical function unit is disposed on a surface of the arrangement portion on the one side. The first semiconductor layer that constitutes the base is thicker than the second semiconductor layer that constitutes the base. A surface of the base on the one side is located more to the one side than the optical function unit.
-
公开(公告)号:US20230172455A1
公开(公告)日:2023-06-08
申请号:US18103408
申请日:2023-01-30
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , G01J3/10 , G01J3/28 , G01J3/14 , G01J3/453 , G01J3/42 , G01J3/02 , G01N21/35 , G16H40/67 , G01N21/359 , A61B5/145 , G01N33/15 , G01N33/49 , G01N21/3563 , G01N21/39 , G01N33/02 , G01N33/44 , G01N21/88 , A61B5/1455 , G16Z99/00 , A61C19/04 , G01N21/3504
CPC classification number: A61B5/0088 , A61B5/0075 , G01J3/108 , G01J3/28 , G01J3/14 , G01J3/453 , G01J3/42 , A61B5/7257 , G01J3/0218 , G01N21/35 , G16H40/67 , G01N21/359 , A61B5/0013 , A61B5/0022 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/4547 , G01N33/15 , G01N33/49 , G01J3/2823 , G01N21/3563 , G01N21/39 , G01N33/02 , G01N33/442 , G01N21/88 , A61B5/6801 , A61B5/7405 , A61B5/742 , G01N33/025 , A61B5/1455 , G16Z99/00 , A61B5/7203 , A61C19/04 , G01J3/02 , G01N21/3504 , G01N2201/129 , H01S3/302
Abstract: An optical system operating in the near or short-wave infrared wavelength range identifies an object based on water absorption. The system comprises a light source with modulated light emitting diodes operating at wavelengths near 1090 and 1440 nanometers, corresponding to lower and higher water absorption. The system further comprises one or more wavelength selective filters and a housing that is further coupled to an electrical circuit and a processor. The detection system comprises photodetectors that are synchronized to the light source, and the detection system receives at least a portion of light reflected from the object. The system is configured to identify the object by comparing the reflected light at the first and second wavelength to generate an output value, and then comparing the output value to a threshold. The optical system may be further coupled to a wearable device or a remote sensing system with a time-of-flight sensor.
-
公开(公告)号:US11668603B2
公开(公告)日:2023-06-06
申请号:US17339067
申请日:2021-06-04
Applicant: Rapid Phenotyping Pty Limited
Inventor: Selene Rodd-Routley
CPC classification number: G01J3/4537 , G01J3/14 , G01J9/02 , G01J2009/0284 , G01J2009/0288
Abstract: Embodiments are disclosed relating to a refractively-scanning interferometer comprising an aperture that receives an incident light beam at a receiving angle, a beam splitter configured to split the incident light beam into a first beam and a second beam, a first and a second reflector arranged to reflect the first beam and second beam, respectively, towards a combining optical element, and a refractive Optical Path Difference (rOPD) assembly interposed between the beam splitter and the first reflector, wherein the rOPD Assembly refracts the first light beam an even number of times with induced phase discrepancy being a vector sum of a first phase discrepancy induced by a first refraction and a second phase discrepancy induced by a second refraction, the rOPD Assembly being configured such that the first phase discrepancy is substantially opposite in direction to the second phase discrepancy, a portion of the first and second phase discrepancies cancelling one another out to decrease magnitude of the phase discrepancy.
-
-
-
-
-
-
-
-
-