Abstract:
The density of successive increments of a cigarette rod is measured by an apparatus which employs one or more photocells operating with ultraviolet, infrared or visible light. The radiation source of each photocell emits a beam of ultraviolet, infrared or visible light which penetrates through the wrapper and the filler of the rod and thereupon impinges upon one or more transducers which transmit signals denoting the density of the monitored portion of the rod to an evaluating circuit. The beams which are emitted by two or more discrete radiation sources are or can be angularly offset with reference to each other, and the evaluating circuit processes the signals from the photocells to generate a single signal which is indicative of the density of the monitored increment of the rod and is used to adjust the trimming device and/or the ejector for defective cigarettes.
Abstract:
A spectrophotometer (10) is provided having the capability to accurately measure spectral reflectance at relatively long sample distances. A first illumination optics arrangement (14) assures uniform illumination to a portion of the sample and a second optical arrangement (20) focuses the reflected image of part of the illuminated sample onto a polychromator (22). Reference beam means are provided so that the polychromator sequentially measures the spectral characteristics of the reference beam and the sample. Continuous monitoring of the illumination at select wavelengths provides illumination normalization data so that a microprocessor (40) can normalize the illumination and compare the reference beam and sample measurements to accurately determine the spectral reflectance characteristics of the sample. Angular and raster scanning capability is also provided.
Abstract:
A device for measuring the optical turbidity, i.e., the soot components in discharge gases of diesel engines, which is relatively simply constructed, operates safely and enables a simple handling even with differently structured measuring devices. This result is achieved in that a controller for controlling the light density of the measuring light beam is optically coupled with a light source. A sample and hold circuit is provided with the values of a measuring detector and the control detector fed to a sample and hold circuit in a time multiplex manner with the measuring values processed in a computer unit. Control values are fed to the light source by means of a control loop. In addition, the computer unit is capable of storing a plurality of measuring values or turbidity values and average value of the stored peak values, whereby the peak values are determined by a dynamic measuring of a defined number of measuring cycles. Moreover, a device is provided which feeds motor related parameter to the computer unit for triggering of measuring value determination and measuring value calculation.
Abstract:
A sensor-integrator circuit having a sensor for producing a current varying in accordance with the sensed parameter or a reference current source, a comparator having inverting and noninverting inputs and an output and charge storage device coupled to the inverting input. The circuit is energized to obtain a given positive steady state reset voltage, a reference voltage is applied to the noninverting input of a comparator which is less positive than the steady state voltage and integration is initiated solely by alternately applying the current from the sensor and the reference current to the inverting input of the comparator.
Abstract:
A present weather observing system including a radiation source for providing a beam of radiation in the atmosphere and a detector for detecting scattered radiation from suspended or precipitating particles within a sample volume, the detector having a field of view intersecting the beam to define the sample volume. The invention further includes a device for determining the size and velocity of at least one particle precipitating through the sample volume, and an element responsive to the device for determining size and velocity for identifying the type of precipitation.