Abstract:
A circuit board including a circuit substrate, a dielectric layer, a first conductive layer and a second conductive layer is provided. The circuit substrate has a first surface and a first circuit layer. The dielectric layer is disposed on the circuit substrate and covers the first surface and the first circuit layer. The dielectric layer has a second surface, at least a blind via extended from the second surface to the first circuit layer and an intaglio pattern. The first conductive layer is disposed inside the blind via. The second conductive layer is disposed in the intaglio pattern and the blind via and covers the first conductive layer. The second conductive layer is electrically connected with the first circuit layer through the first conductive layer.
Abstract:
A circuit board includes a foil circuit provided on a synthetic resin plate formed by injection molding, made of a copper foil, and having a pattern different for the circuit board. Anchor pins projecting upward are provided on the resin plate and passed through pinholes made in the foil circuit. The foil circuit is positioned and secured to the resin plate. In a required portion of the resin plate, a terminal insertion hole is provided, and a receiving terminal is secured to the required portion of the terminal insertion hole and connected to the foil circuit.
Abstract:
A method of enabling selective area plating on a substrate (201) includes forming a first electrically conductive layer (310) on the substrate, covering the electrically conductive layer with an anti-electroless plating layer (410), patterning the substrate in order to form therein a feature (510, 520) extending through the anti-electroless plating layer and the first electrically conductive layer, forming a second electrically conductive layer (610) adjoining and electrically connected to the first electrically conductive layer, forming a third electrically conductive layer (710) over the second electrically conductive layer, and removing the anti-electroless plating layer and the first electrically conductive layer.
Abstract:
Disclosed is a printed circuit board, which includes an insulating member having a circuit pattern embedded in one surface thereof, a build-up layer formed on one surface of the insulating member and including a build-up insulating layer and a circuit layer formed in the build-up insulating layer and having a via connected to the circuit pattern, and a solder resist layer formed on the build-up layer. A method of fabricating the printed circuit board is also provided. The printed circuit board is fabricated using a build-up process and the outermost circuit layer thereof is formed to have an embedded structure using an imprinting process, thus minimizing the separation of the circuit layer and reducing the lead time and the fabrication cost.
Abstract:
In the wiring board, insulating layers and wiring layers are alternately laminated, and the wiring layers are electrically connected by the vias. The wiring board includes first terminals arranged in a first surface and embedded in an insulating layer, second terminals arranged in a second surface opposite to the first surface and embedded in an insulating layer, and lands arranged in an insulating layer and in contact with the first terminals. The vias electrically connect the lands and the wiring layers laminated alternately with the insulating layers. No connecting interface is formed at an end of each of the vias on the land side but a connecting interface is formed at an end of each of the vias on the wiring layer side.
Abstract:
A method of manufacturing a printed circuit board is disclosed. The method includes: forming a relievo pattern and an intaglio pattern on a surface of a base plate; forming a metal plate, which has a metal pattern that corresponds with a shape of the relievo pattern and the intaglio pattern, by plating a surface of the relievo pattern and a surface of the intaglio pattern; separating the metal plate from the base plate; pressing the metal plate onto an insulation layer with the metal pattern facing the insulation layer; and removing a portion of the metal plate such that the metal pattern is exposed. Since this method does not use carriers, there is no need for a chemical etching process for carrier removal.
Abstract:
According to this invention, a wiring board includes a conductive pattern formed from leads each of which is formed on an organic layer and has a thickness t larger than a width W.
Abstract:
A printed circuit board having a micro strip line, a printed circuit board having a strip line and a method of manufacturing thereof are disclosed. The printed circuit board having a micro strip line in accordance with an embodiment of the present invention includes a first insulation layer, a signal line buried in one surface of the first insulation layer, a plurality of conductors penetrating through the first insulation layer and being disposed on both sides of the signal line in parallel with the signal line, and a ground layer formed to be electrically connected to the conductor on the other surface of the first insulation layer.
Abstract:
A circuit board having a semiconductor chip embedded therein includes: a core board having opposing first and second surfaces and a through-hole; a semiconductor chip received in the through-hole and having a first active surface and an opposing second active surface, wherein first electrode pads comprising signal pads, power pads, and ground pads are provided on the first active surface; a first dielectric layer provided on the first surface of the core board and the first active surface of the semiconductor chip and configured to fill a gap between the through-hole and the semiconductor chip so as to secure the semiconductor chip in position to the through-hole; and a first circuit layer disposed in the first dielectric layer so as to be flush with the first dielectric layer, provided with first conductive vias disposed in the first dielectric layer, and electrically connected to the first electrode pads.
Abstract:
Provided is a wafer level package including a first substrate that has circuit patterns provided on the top surface thereof and first vias formed therein, the first vias being electrically connected to the circuit patterns; and a second substrate that is bonded to the bottom surface of the first substrate through anodic bonding and has second vias formed therein.