Abstract:
This disclosure describes an aperture shaped to provide a narrow beam in the horizontal plane but a wider beam in the vertical plane that will provide improved image quality in spectrometers.
Abstract:
Apparatus and methods for the extracorporeal treatment of blood are described. The apparatus includes a dialyzer which is separated into a first and second chamber by a semipermeable membrane, wherein the first chamber is disposed in a dialysis fluid path and the second chamber can be connected to the blood circulation of a patient by way of a blood inflow conduit and a blood outflow conduit, a feed for fresh dialysis fluid, a discharge for spent dialysis fluid, a measuring device disposed within the discharge for determining the absorption of the spent dialysis fluid flowing through the discharge, wherein the measuring device has at least one radiation source for substantially monochromatic electromagnetic radiation, and a detector system for detecting the intensity of the electromagnetic radiation, wherein means are provided to compensate for changes that occur in the intensity of the electromagnetic radiation of the radiation source and/or the sensitivity of the detector system.
Abstract:
An optical apparatus for measurement of industrial chemical processes. The analyzer uses Raman scattering and performs measurement of chemical concentrations in continuous or batch processes. The analyzer operates at a standoff distance from the analyte (or analytes) and can measure concentrations through an optical port, facilitating continuous, non-destructive, and non-invasive analysis without extracting the analyte or analytes from the process. The analyzer can measure one or several solid, liquid, or gaseous analytes, or a mixture thereof.
Abstract:
A monolithic frame for optics used in interferometers where the material of the monolithic frame may have a substantially different coefficient of thermal expansion from the beamsplitter and compensator without warping, bending or distorting the optics. This is accomplished through providing a securing apparatus holding the optics in place while isolating the expansion thereof from the expansion of the frame. Stability in optical alignment is therefore achieved without requiring a single material or materials of essentially identical coefficients of thermal expansion. The present invention provides stability in situations where it is not possible to utilize a single material for every component of the interferometer.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of to the light detecting element 4 to transmit the light L1, L2.
Abstract:
In a state that the body portion 4 is regulated by inner wall planes 27, 29, 28 of the package 3 so as not to move in parallel or perpendicularly with respect to the rear plane 4b, the spectroscopic module is directly supported by the package 3, thereby when the spectrometer is downsized, the spectroscopic module 2 can be supported securely and also there is provided securely a positional accuracy between the light incident opening 22a of the package 3, the spectroscopic portion 6 of the spectroscopic module 2 and the light detecting element 7. Further, the lead 23 is buried into the package 3 to give derivation and support by the lead deriving portion 26, thereby the lead deriving portion 26 in itself of the package 3 is allowed to act as a base when wire bonding is conducted to electrically connect the lead 23 with the light detecting element 7, thus preventing breakage and deviation of the spectroscopic module 2.
Abstract:
The present patent application provides an interference cavity for precisely controlling an optical path including a cavity formed by two equal distance arms, wherein a positive adjusting plate and a negative adjusting plate are disposed in the interference cavity for compensating the change of a cavity length with temperature and thereby ensuring that the interference cavity length is a constant. The present patent application utilizes the matching relationship between the change of the refractive index of the positive adjustment plate with the temperature and the change of the refractive index of the negative adjusting plates with the temperature to make the optical path difference OPL invariant with changes in the environment temperature and thereby to ensure the precision of the optical path.
Abstract:
Time-resolved analysis of a spectrum is performed by illuminating a one-dimensional array of charge-transfer device light-sensitive pixel cells and periodically non-destructively copying charges in the light-sensitive cells to respective storage cells (“row storage registers”) co-located with the light-sensitive cells in an integrated circuit. Information about the charges stored in at least some of the storage cells is provided to a component external to the integrated circuit.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, the light transmissive plate 16 covers a part of a light incident opening 50a. Thus, a light incident side surface 63a of the optical resin adhesive 63 becomes a substantially flat plane in the light passing hole 50. Therefore, it is possible to make the light L1 appropriately incident into the substrate 2.