Abstract:
A semiconductor device mounting structure includes: a substrate with an opening provided therein; a frame member with a frame body and a protruding portion that protrudes from the frame body, the frame body being formed and accommodated in a groove around the opening; a coreless substrate provided above the substrate and supported by the protruding portion of the frame member; and semiconductor elements provided on the coreless substrate.
Abstract:
A wiring board includes a base wiring board 10 and a frame wiring board 20. The base wiring board 10 has an element mounting portion 1a and a frame-shaped frame joining portion 1b on the upper surface and a solder resist layer 4 deposited in a portion between the element mounting portion 1a and the frame joining portion 1b. In the wiring board 10, a first joining pad 6 provided in the frame joining portion 1b and a second joining pad 16 provided in a lower surface of the frame wiring board 20 are joined together via a solder bump H so that a gap may be formed between the frame joining portion 1b and the frame wiring board 20. The base wiring board 10 has a resin injection hole 8 penetrating through the base wiring board 10 in the frame joining portion 1b, and the gap is filled with a sealing resin 18.
Abstract:
A composite material and an electronic device are disclosed in embodiments of the present invention, relating to the field of electronic assembly technologies. The technical problem of the existing electronic device with an excessively complicated internal structure is solved. The composite material includes an electrically and thermally conductive layer, a viscose glue layer, and an insulating layer, where the electrically and thermally conductive layer and the insulating layer are pasted at two sides of the viscose glue layer; the viscose glue layer is electrically conductive. The electronic device includes a circuit board and the composite material. Gaps are formed at the insulating layer in positions corresponding to electronic components and/or shielding frames, with the viscose glue layer exposed, the composite material is pasted onto the electronic components and/or the shielding frames via the viscose glue layer. The present invention is applied to simplify the structure of an electronic device.
Abstract:
A method for manufacturing a circuit board system includes attaching (501), to a circuit board, electrical components that constitute together with the circuit board a first functional entity and a second functional entity that are disconnected from each other so that operations of the first and second functional entities are substantially free from mutual interactions. The method includes directing (502) electrical activity, for example testing and/or data loading, to the first functional entity and/or to the second functional entity. Subsequently, the method includes providing (503) at least one galvanic connection between the first and second functional entities by pushing one or more press-fit pins in holes of the circuit board in order to enable the first and second functional entities to co-operate with each other. The method allows functional entity-specific testing, data loading, and other electrical activity after e.g. a soldering process and prior to possible functionality testing (504).
Abstract:
A light source support on a first printed circuit for a lighting and/or signalling module, comprising a first housing intended to accommodate the first printed circuit and presenting an opening for the light source; means of positioning and fixation of the support; and means of positioning of a flexible printed circuit, intended to position the flexible printed circuit in relation to the first printed circuit, so as to link them electrically.
Abstract:
A method of making a supported foam circuit laminate comprises fitting a dielectric foam substrate having a shape defined by edges to a support frame having a thickness, an inner rim and an outer rim, wherein the edges of the dielectric foam substrate are flush with the inner rim of the support frame, and the dielectric foam substrate has a thickness that is greater than the thickness of the support frame; disposing an electrically conductive layer onto a side of the dielectric foam substrate and the support frame, wherein the edges of the electrically conductive layer overlap the inner rim of the support frame; and co-laminating the electrically conductive layer to the dielectric foam substrate and the overlapped support frame under heat and pressure to provide a supported foam circuit laminate.
Abstract:
A component for mounting on a PCB, intended to support an electronics component, with an extension in the longitudinal, lateral and vertical directions. The component has a first and a second main surface, the second main surface being intended for mounting on the PCB. The component is made in a non conducting material, with a first layer of conducting material arranged on its first main surface, the conducting layer being connected to a conducting layer on the second main surface of the component by electrically conducting means. The component's extension in the vertical direction is smaller than its extension in either the longitudinal or lateral direction.
Abstract:
A Printed Circuit Assembly has a multiplicity of connectors with each connector containing insulating matrices with each matrix containing a multiplicity of conducting or non-conducting standoffs with each standoff contacting one or more printed circuit boards. The standoffs permit controlled-impedance electrical connections, thermal management and mechanical rigidity of the overall assembly making the assembly suitable for use in any environment including the most harsh extremes.
Abstract:
Methods and apparatuses are disclosed for fabricating a printed circuit board (PCB) having electromagnetic interference (EMI) shielding and also having reduced volume over conventional frame-and-shield approaches. Some embodiments include fabricating the PCB by mounting an integrated circuit to the PCB, outlining an area corresponding to the integrated circuit with a number of grounded vias, selectively applying an insulating layer over the PCB such that at least one of the grounded vias are exposed, and selectively applying a conductive layer over the PCB such that the conductive layer covers at least a portion of the integrated circuit and such that the conductive layer is coupled to the at least one of the grounded vias that are exposed.
Abstract:
A module is electrically connectable to a computer system. The module includes a first surface and a first plurality of circuit packages coupled to the first surface. The module further includes a second surface and a second plurality of circuit packages coupled to the second surface. The second surface faces the first surface. The module further includes at least one thermal conduit positioned between the first surface and the second surface. The at least one thermal conduit is in thermal communication with the first plurality of circuit packages and the second plurality of circuit packages.