Abstract:
A capacitive sensor includes a first conductive structure; a second conductive structure movable relative to the first conductive structure in response to an external force acting thereon, wherein the first and the second conductive structures form a first capacitor having a first capacitance that changes with a change in a distance between the first conductive structure and second conductive structure, wherein the first capacitance is representative of the external force; and a diagnostic circuit configured to detect a first leakage current in the capacitive sensor by measuring an first electrical parameter that is affected by the first leakage current and comparing the measured first electrical parameter to a first predetermined error threshold, wherein the diagnostic circuit is further configured to generate a first error signal in response to the measured first electrical parameter being greater than the first predetermined error threshold.
Abstract:
A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
Abstract:
A method for producing at least one cavity within a semiconductor substrate includes dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity. The method includes depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity. Furthermore, the method includes removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate. This is followed by electrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity. A method for producing a micromechanical sensor system in which this type of cavity formation is used and a corresponding MEMS are also disclosed.
Abstract:
Embodiments relate to sensor and sensing devices, systems and methods. In an embodiment, a micro-electromechanical system (MEMS) device comprises at least one sensor element; a framing element disposed around the at least one sensor element; at least one port defined by the framing element, the at least one port configured to expose at least a portion of the at least one sensor element to an ambient environment; and a thin layer disposed in the at least one port.
Abstract:
A method for producing at least one cavity within a semiconductor substrate includes dry etching the semiconductor substrate from a surface of the semiconductor substrate at at least one intended cavity location in order to obtain at least one provisional cavity. The method includes depositing a protective material with regard to a subsequent wet-etching process at the surface of the semiconductor substrate and at cavity surfaces of the at least one provisional cavity. Furthermore, the method includes removing the protective material at least at a section of a bottom of the at least one provisional cavity in order to expose the semiconductor substrate. This is followed by electrochemically etching the semiconductor substrate at the exposed section of the bottom of the at least one provisional cavity. A method for producing a micromechanical sensor system in which this type of cavity formation is used and a corresponding MEMS are also disclosed.
Abstract:
Embodiments relate to sensor and sensing devices, systems and methods. In an embodiment, a micro-electromechanical system (MEMS) device comprises at least one sensor element; a framing element disposed around the at least one sensor element; at least one port defined by the framing element, the at least one port configured to expose at least a portion of the at least one sensor element to an ambient environment; and a thin layer disposed in the at least one port.
Abstract:
A pressure sensor is provided. The pressure sensor includes at least two electrodes and an integrated circuit configured to sense a capacitance between the at least two electrodes. Further, the pressure sensor includes a Microelectromechanical System (MEMS) structure including a conductive or dielectric membrane configured to move, depending on the pressure, relative to the at least two electrodes.
Abstract:
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a substrate having a first surface and a second surface arranged opposite to the first surface; a stress-sensitive sensor disposed at the first surface of the substrate, where the stress-sensitive sensor is sensitive to mechanical stress; a stress-decoupling trench that has a vertical extension that extends from the first surface into the substrate, where the stress-decoupling trench vertically extends partially into the substrate towards the second surface although not completely to the second surface; and a plurality of particle filter trenches that vertically extend from the second surface into the substrate, wherein each of the plurality of particle filter trenches have a longitudinal extension that extends orthogonal to the vertical extension of the stress-decoupling trench.
Abstract:
Embodiments relate to microelectromechanical systems (MEMS) and more particularly to membrane structures comprising pixels for use in, e.g., display devices. In embodiments, a membrane structure comprises a monocrystalline silicon membrane above a cavity formed over a silicon substrate. The membrane structure can comprise a light interference structure that, depending upon a variable distance between the membrane and the substrate, transmits or reflects different wavelengths of light. Related devices, systems and methods are also disclosed.
Abstract:
A micromechanical semiconductor sensing device is disclosed. In an embodiment the sensing device includes a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, the piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.