Abstract:
A method of producing a conversion element includes providing a substrate having a surface; forming a first mask structure above the surface, wherein the first mask structure has first webs and first openings arranged between the first webs and the first openings form cavities in which the surface of the substrate is accessible; arranging a second mask structure above the first mask structure, wherein the second mask structure has second webs and second openings arranged between the second webs, the first webs are at least partly covered by the second webs, and the cavities remain at least partly accessible through the second openings; spraying a material into the cavities through the second openings; removing the second mask structure; and removing the first mask structure.
Abstract:
A gypsum board comprises a cover sheet and a gypsum layer disposed on the cover sheet. The gypsum layer comprises the reaction product of an isocyanate, water, and stucco. The isocyanate increases the moisture resistance of the gypsum board. A method of manufacturing the gypsum board comprises the steps of combining the isocyanate, the water, and the stucco to form a slurry, and applying the slurry to a cover sheet to form the gypsum layer on the cover sheet.
Abstract:
Provided is a method of manufacturing an aromatic polyketone film, the method including: applying a coating liquid to at least a part of a surface of a substrate to form a coating liquid layer, the coating liquid including a solvent and an aromatic polyketone having a structural unit represented by Formula (1) or (2); drying the coating liquid layer; and after the drying, subjecting the coating liquid layer to a heat treatment. In Formula (1) or (2), each R1 independently represents an alkyl group having 1 to 20 carbon atoms; each R2 and each R3 independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms; X represents a specific divalent aromatic hydrocarbon group, or a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms; and Y represents a specific divalent functional group.
Abstract:
The present disclosures concerns embodiments of a footwear insole that can be used with various types of footwear, including, without limitation, shoes (including open and closed toe shoes), boots, sandals, etc. The insole includes an upper fabric layer that comes in contact with the foot and a cushioning base layer that contacts the footbed of the footwear. The base layer desirably is formed from a self-adhering material that can be applied to in liquid form to the fabric and bonds directly to the fibers of the fabric when cured, so as to eliminate the need for a separate intermediate adhesive layer for securing the fabric to the base layer. The base layer is also configured to substantially prevent shrinkage of the insole when subjected to multiple wash and dry cycles.
Abstract:
Catalytic metal nanoparticles can be attached on a base. A pre-treatment method for plating includes a catalytic particle-containing film forming process of forming a catalytic particle-containing film on a surface of a substrate by supplying, onto the substrate, a catalytic particle solution which is prepared by dispersing the catalytic metal nanoparticles and a dispersing agent in a solvent containing water; a first heating process of removing moisture contained at least in the catalytic particle-containing film by heating the substrate to a first temperature; and a second heating process of polymerizing the dispersing agent to have a sheet shape by heating the substrate to a second temperature higher than the first temperature after the first heating process and fixing the catalytic metal nanoparticles on a base layer by covering the catalytic metal nanoparticles with the sheet-shaped dispersing agent.
Abstract:
A reflective conductive film includes (i) a reflective polymeric substrate having a polymeric base layer and a polymeric binding layer, wherein the polymeric material of the base layer has a softening temperature TS-B, and the polymeric material of the binding layer has a softening temperature TS-HS; and (ii) a conductive layer that includes a plurality of nanowires, wherein the nanowires are bound by the polymeric matrix of the binding layer such that the nanowires are dispersed at least partially in the polymeric matrix of the binding layer, wherein the polymeric substrate is a biaxially oriented substrate, and wherein the polymeric binding layer is a copolyester.
Abstract:
Presented herein are articles and methods featuring substrates with thin, uniform polymeric films grafted (e.g., covalently bonded) thereupon. The resulting coating provides significant reductions in thermal resistance, drop shedding size, and degradation rate during dropwise condensation of steam compared to existing coatings. Surfaces that promote dropwise shedding of low-surface tension condensates, such as liquid hydrocarbons, are also demonstrated herein.
Abstract:
The present disclosures concerns embodiments of a footwear insole that can be used with various types of footwear, including, without limitation, shoes (including open and closed toe shoes), boots, sandals, etc. The insole includes an upper fabric layer that comes in contact with the foot and a cushioning base layer that contacts the footbed of the footwear. The base layer desirably is formed from a self-adhering material that can be applied to in liquid form to the fabric and bonds directly to the fibers of the fabric when cured, so as to eliminate the need for a separate intermediate adhesive layer for securing the fabric to the base layer. The base layer is also configured to substantially prevent shrinkage of the insole when subjected to multiple wash and dry cycles.
Abstract:
Presented herein are articles and methods featuring substrates with thin, uniform polymeric films grafted (e.g., covalently bonded) thereupon. The resulting coating provides significant reductions in thermal resistance, drop shedding size, and degradation rate during dropwise condensation of steam compared to existing coatings. Surfaces that promote dropwise shedding of low-surface tension condensates, such as liquid hydrocarbons, are also demonstrated herein.
Abstract:
A substrate holder for a lithographic apparatus has a planarization layer provided on a surface thereof. The planarization layer provides a smooth surface for the formation of a thin film stack forming an electronic component. The thin film stack comprises an (optional) isolation layer, a metal layer forming an electrode, a sensor, a heater, a transistor or a logic device, and a top isolation layer.