Abstract:
A composite includes a substrate, a binder layer disposed on a surface of the substrate; and a nanofiller layer comprising nanographene and disposed on a surface of the binder layer opposite the substrate. In addition, a nano-coating layer for coating a substrate includes multiple alternating layers of the binder layer and the nanofiller layer. Articles coated with the nano-coating layer prepared from alternating layers of nanofiller layer and binder layer have improved barrier properties, and may be used in down-hole applications.
Abstract:
The invention relates generally to a process (100) comprising as process steps: a) providing a substrate having a substrate surface; b) providing a first composition, comprising: i) SnCl2, and ii) water; c) providing a second composition, comprising: i) sulfuric acid, and ii) a reducing agent; d) providing a third composition, obtainable by mixing: i) AgNO3, ii) nitric acid, iii) water, and iv) NH3; e) contacting the substrate surface with the first composition under obtaining an activated substrate surface; f) contacting the activated substrate surface with the second composition and the third composition, wherein the activated substrate surface has a temperature in a range from about 10 to about 50° C. The invention further relates to a composite obtainable by the above process; to a composite comprising an Ag-comprising layer; to a composition comprising AgNO3; and to a use of composition comprising AgNO3 for forming conducting paths.
Abstract:
An automated process for the antistatic coating of plastic molding surfaces or for plastic-based or lacquer-based coatings by contacting the surface with a solution containing at least one surfactant, at least 20 wt. % of an organic solvent and, optionally, water.
Abstract:
The gas barrier film having a thermoplastic polymer film, and an inorganic thin film provided on at least one surface of the thermoplastic polymer film, which gas barrier film is formed by applying, to the inorganic thin film, a solution which contains at least one ion species selected from the group consisting of alkali metal ions, alkaline earth metal ions, and ammonium ions and originating from a low-molecular-weight electrolyte having a molecular weight of 1,000 or less and which has a total ion concentration of the ion species of 1×10−5 mol/L or more and less than 10 mol/L and a solution concentration less than a saturation concentration.
Abstract:
Methods for selectively coating substrates are disclosed. The methods generally comprise applying acid to a portion of the substrate; coating the substrate with a coating comprising a component that reacts with the acid; and removing the coating from the portion of the substrate to which the acid has been applied.
Abstract:
In accordance with the present invention, a method of prevention of defects in uniform coatings is proposed. The method comprises decelerating the advancement of the dewetting front of a coating attained by externally controlling the wettability and the size of a buffer zone at the boundary of the coating area. The surface of the buffer zone should have better wettability with respect to the fluid in the coating than the surface of the coating area.
Abstract:
A method for coating thermoplastic resin beads for use in imitation pearls includes the steps of: applying to celluloid a surface treatment compound (A) dissolved into a mixed solution of acetone, ethylacetate, butylacetate, and benzene; coating the surface treated celluloid with compounds for an under coat and a mid coat, each compound being obtained by dissolving celluloid into a mixed solution of ethylacetate and amylacetate, and adding a pigment thereto; and coating the celluloid with a compound for a top coat (D) that is prepared by dissolving celluloid into ethylacetate, and adding a pigment thereto.
Abstract:
The foregoing differential gloss covering comprises a backing substrate, an ink layer, and a cured top layer having a first surface portion with a first gloss and a second surface portion, made by the process comprising providing the backing substrate; depositing an ink formulation comprising a curing agent over at least a first area of a top side of the backing substrate to form said ink layer; coating the top side of the backing substrate with a radiation curable formulation to form a top curable layer; diffusing at least a portion of the curing agent into the top curable layer; curing the top curable layer to form the cured top layer and thereby forming a differential gloss covering having said first surface portion above the first area of said top of said backing substrate having the first gloss and the second surface portion having the second gloss that is different from said first gloss.
Abstract:
A process using ultraviolet light having a wavelength of 160 to 500 nanometers without higher wavelengths and a high intensity between about 1 and 40 watts/cm2 to surface treat a carbon containing fiber is described. The treated fiber contains an enhanced amount of oxygen on the surface which significantly improves the bondability of the fiber in composites.
Abstract:
A method of producing a fuel hose having superior adhesive reliability with superior initial adhesive strength between a tubular fluororesin inner layer and a thermoplastic resin outer layer and with restrained deterioration in adhesive strength after heat aging and immersion into fuel under severe conditions such as an inside of an engine compartment. The method includes plasma treatment on a peripheral surface of the tubular fluororesin inner layer, at least one treatment of water treatment and silane coupling agent treatment on the plasma treated surface and formation of the thermoplastic resin outer layer on the treated peripheral surface.