Abstract:
Provided is a pressure-sensitive adhesive layer for a transparent conductive film having a patterned transparent conductive thin film, which has transparent as the pressure-sensitive adhesive layer for transparent conductive film and can prevent the patterned transparent conductive thin film from degrading the appearance of the conductive film. A pressure-sensitive adhesive layer for a transparent conductive film having a patterned transparent conductive thin film, wherein the pressure-sensitive adhesive layer is made from an acrylic pressure-sensitive adhesive composition containing: 100 parts by weight of an acryl-based polymer obtained by polymerization of a monomer component including an alkyl(meth)acrylate; and 30 to 150 parts by weight of a styrene-based oligomer, the pressure-sensitive adhesive layer has a refractive index of 1.50 or more, the pressure-sensitive adhesive layer has a haze of 2% or less as measured at a thickness of 30 μm.
Abstract:
The present disclosure provides an antistatic film and a polarizer attachment device. The antistatic film includes a static electricity elimination layer configured to eliminate static charges and an adhesive layer arranged at one surface of the static electricity elimination layer. According to the present disclosure, it is able to directly attach the antistatic film onto a bearing platform of the polarizer attachment device.
Abstract:
An anisotropic conductive film includes a conductive adhesive layer including conductive particles and insulating particles, and an insulating adhesive layer not including conductive particles. In the anisotropic conductive film, the conductive particles and the insulating particles of the conductive adhesive layer have a total particle density of 7.0×105/d2 to 10.0×105/d2 (particles) per square millimeter (mm2) (where d is a diameter of the conductive particles in μm).
Abstract:
A film material includes a substrate and a film layer arranged on one main surface of the substrate. The film layer contains a fibrous first resin and a thermosetting second resin in an uncured or semi-cured state, and a linear expansion coefficient CF of the first resin is smaller than a linear expansion coefficient CR of the second resin in cured state.
Abstract:
A curable silicone composition containing a curable organosiloxane composition, silver, and at least one electrically conductive metal other than silver, the curable silicone composition being characterizable by a total silver concentration of from 50 to less than 60 weight percent and a thixotropic index that is adjustable from 3 to 10 measured according to TI Test Method while the composition remains curable to an electrically conductive silicone adhesive having a volume resistivity of less than 0.001 Ohm-centimeter measured according to Volume Resistivity Test Method without increasing the total concentration of electrically conductive metal in the curable silicone composition to 72 weight percent or higher, the electrically conductive silicone adhesive, an electrical device comprising the electrically conductive silicone adhesive, and a method of manufacturing the electrical device.
Abstract:
A semiconductor device connected using an anisotropic conductive adhesive composition, the anisotropic conductive adhesive composition including a thermosetting polymerization initiator; and tetrahydrofurfuryl (meth)acrylate or furfuryl (meth)acrylate, wherein the tetrahydrofurfuryl (meth)acrylate or furfuryl (meth)acrylate is present in the composition in an amount of 1 wt % to 25 wt %, based on the total weight of the composition in terms of solid content.
Abstract:
A thermally-conductive pressure-sensitive adhesive sheet according to the present invention includes a pressure-sensitive adhesive layer containing thermally-conductive particles. One side of the sheet is an adhesive face, and the other side is a non-adhesive face. The thermally-conductive pressure-sensitive adhesive sheet may include a non-adhesive layer on or over only one side of the pressure-sensitive adhesive layer. In this case, the ratio of the thickness of the non-adhesive layer to the thickness of the pressure-sensitive adhesive layer is preferably 0.04 to 0.6. The thermally-conductive pressure sensitive adhesive sheet preferably has a thermal resistance of 6 K·cm2/W or less. The thermally-conductive pressure sensitive adhesive sheet preferably has a total thickness of 50 to 500 μm.
Abstract:
Release film furnished on at least one side with a release layer (c) based on at least one cured polysiloxane, the film comprising at least one inner layer (a) based on at least one thermoplastic polymer, equipped with at least one at least oligomeric compound having a long-term antistatic effect, as antistat, and at least one layer (b) based on at least one thermoplastic polymer; method for producing the release film, and the use thereof as a detachable protective or masking film.
Abstract:
A semiconductor device includes an electrode including a plurality of pillars, a semiconductor element configured to be electrically-connected with the electrode, a substrate having electrode patterns, and a conductive adhesive layer located between the substrate and the electrode, the conductive adhesive layer including conductive substances configured to electrically-connect the pillars and the electrode patterns to each other, and including a body which encloses the conductive substances.
Abstract:
The purpose of the present invention is to provide an adhesive composition having high heat conductivity and excellent adhesion, in which the dispersibility of a heat-conductive filler is controlled, and in which thermal stress during cooling/heating cycle testing can be alleviated. An adhesive composition containing a soluble polyimide (A), an epoxy resin (B), and a heat-conductive filler (C), the adhesive composition characterized by containing three types of diamine residues having a specific structure, and in that the content of the epoxy resin (B) is 30-100 parts by weight with respect to 100 parts by weight of the soluble polyimide (A).