Abstract:
In one embodiment, a flow cytometer is disclosed having a compact light detection module. The compact light detection module includes an image array with a transparent block, a plurality of micro-mirrors in a row coupled to a first side of the transparent block, and a plurality of filters in a row coupled to a second side of the transparent block opposite the first side. Each of the plurality of filters reflects light to one of the plurality of micro-mirrors and passes light of a differing wavelength range and each of the plurality of micro-mirrors reflects light to one of the plurality of filters, such that incident light into the image array zigzags back and forth between consecutive filters of the plurality of filters and consecutive micro-mirrors of the plurality of micro-mirrors. A radius of curvature of each of the plurality of micro-mirrors images the fiber aperture onto the odd filters and collimates the light beam on the even filters.
Abstract:
An electronic device is provided which includes a light emitting module that radiates infrared light, a window disposed on the light emitting module and having a specific refractive index with respect to the infrared light, wherein the window includes a refraction part that totally reflects the infrared light inside the window in correspondence with the specific refractive index, and a fingerprint sensor disposed under the window and obtaining a fingerprint of a user based on a user input on the window by using scattered light of the infrared light.
Abstract:
Operational parameters of a single-photon detector are determined with a continuous wave laser source. At a fixed trigger, a dark count probability and a series of count probabilities at different optical powers are determined. A particular optical power is selected by using a wide-range variable attenuator to attenuate the optical power of the continuous wave laser. The dark count probability and the count probabilities are determined for different trigger rates. The operational parameters include efficiency, afterpulsing constant, and detrap time. The operational parameters are computed by fitting the computed dark count probabilities and count probabilities to a user-defined relationship.
Abstract:
A system with a machine and a lighting device. The machine includes an image capture device and a machine vision processing system configured to detect a characteristic of a subject in a space for an operation of the machine. The lighting device includes a first light source for generating light to illuminate the space, and a second light source for generating light of a particular wavelength to support detection of the characteristic of the subject via the machine vision processing system. The light of the particular wavelength is output at a sufficient intensity reasonably expected to produce a particular emission from the subject detectable via the image capture device different from an emission produced by exposure of the subject to the light for illumination of the space. The first and second light sources are integrated into the lighting device.
Abstract:
The present disclosure describes systems, methods, and devices for estimating spectral contributions in ambient light. The present disclosure also describes systems, methods, and devices for compensating for field of view errors resulting from the user, contextual structures (e.g., buildings, trees, fixtures, or geological formations), atmospheric effects (e.g., ozone coverage, smog, fog, haze, or clouds), device structures, and/or device orientation/tilt relative to a light source being measured (e.g., sun, indoor/outdoor light emitter, or an at least partially reflective surface). The present disclosure also describes systems, methods, and devices for estimating spectral contributions in light or color measurements and accounting for field of view errors to obtain a refined estimate.
Abstract:
The invention relates to a laser assembly (100) having a laser (L) for generating primary laser pulses (1), beam splitting optics (15) for splitting a primary laser pulse into a plurality of temporally staggered sub-pulses, and having focusing optics (17-19) for focusing the sub-pulses in or on an object (20) so that every sub-pulse is focused in a separate focus volume (F). The invention is characterized in that the mutual spatial and/or temporal relationship of the focus volumes (F) of the sub-pulses originating from a common primary laser pulse is variably adjustable. The invention also relates to a corresponding method.
Abstract:
System and method for accurately measuring alignment of every exposure field on a pre-patterned wafer without reducing wafer-exposure throughput. Diffraction grating disposed in scribe-lines of such wafer, used as alignment marks, and array of encoder-heads (each of which is configured to define positional phase(s) of at least one such alignment mark) are used. Determination of trajectory of a wafer-stage scanning during the wafer-exposure in the exposure tool employs determining in-plane coordinates of such spatially-periodic alignment marks by simultaneously measuring position-dependent phases of signals produced by these marks as a result of recombination of light corresponding to different diffraction orders produced by these marks. Measurements may be performed simultaneously at all areas corresponding to at least most of the exposure fields of the wafer, and/or with use of a homodyne light source, and/or in a wavelength-independent fashion, and/or with a pre-registration process allowing for accommodation of wafers with differently-dimensioned exposure fields.
Abstract:
The provided solar simulator light-intensity evaluation apparatus and method can evaluate the characteristics of a solar cell in an arbitrary place at an arbitrary time and date, using an existing solar simulator, as follows: an estimated spectral irradiance of the natural sunlight is calculated under a measurement condition including a place and/or a time and date where and when the solar cell is measured; and an target value of adjustment and estimated light amount value of the solar simulator are calculated under the measurement condition, on the basis of the estimated spectral irradiance having been calculated, the spectral irradiance of the solar simulator, and solar cell information including a spectral sensitivity of the solar cell.
Abstract:
A method and apparatus for simulating light. A first light from a first filterer is output to a solar cell. The first light output by the first filterer has a coarse spectrum that simulates the light in a selected environment. A second light from a second filterer is output to the solar cell while the first light is output by the first filterer. The second light output by the second filterer has a fine spectrum selected for a group of junctions in the solar cell.
Abstract:
The present disclosure relates to an optical sensor module, an optical sensing accessory, and an optical sensing device. An optical sensor module comprises a light source, a photodetector, and a substrate. The light source is configured to convert electric power into radiant energy and emit light to an object surface. The photodetector is configured to receive the light from an object surface and convert radiant energy into electrical current or voltage. An optical sensing accessory and an optical sensing device comprise the optical sensor module and other electronic modules to have further applications.