Abstract:
A circuit for detecting electromagnetic radiation includes a pyroelectric sensor element connected to convert electromagnetic radiation into an electric signal. An n-channel junction field effect transistor is connected to receive the electric signal. A printed circuit board includes at least one low inductance low resistance area to provide a ground path for all alternating current components. A first capacitor is connected between the FET source terminal and a second capacitor is connected between the FET drain terminal and ground. A gate resistor is connected in parallel with the sensor element or a resistor is included in the sensor elements.
Abstract:
The present invention for imaging sensor rejuvenation may include a rejuvenation illumination system configured to selectably illuminate a portion of an imaging sensor of an imaging system with illumination suitable for at least partially rejuvenating the imaging sensor degraded by exposure to at least one of extreme ultraviolet light or deep ultraviolet light; and a controller communicatively coupled to the rejuvenation illumination system and configured to direct the rejuvenation illumination system to illuminate the imaging sensor for one or more illumination cycles during a non-imaging state of the imaging sensor.
Abstract:
A method and apparatus are provided for processing light from a light source. The method includes the steps of measuring a predetermined set of characteristics of the light source and detecting flicker when the predetermined set of characteristics exceed a corresponding flicker fusion threshold value.
Abstract:
A shuttering and sealing device is disclosed. In one embodiment, the device includes an aperture through which light may pass to an optical sensor, a seal surrounding the aperture, and a shutter movable between an open position in which the shutter does not cover the aperture and a closed position in which the shutter covers the aperture and the seal seals the shutter around the aperture.
Abstract:
An infrared sensor IC and an infrared sensor, which are extremely small and are not easily affected by electromagnetic noise and thermal fluctuation, and a manufacturing method thereof are provided. A compound semiconductor that has a small device resistance and a large electron mobility is used for a sensor (2), and then, the compound semiconductor sensor (2) and an integrated circuit (3), which processes an electrical signal output by the compound semiconductor sensor (2) and performs an operation, are arranged in a single package using hybrid formation. In this manner, an infrared sensor IC that can be operated at room temperature can be provided by a microminiature and simple package that is not conventionally produced.
Abstract:
In order to reduce the exposure of a detector surface 180 of a photo-multiplier 160 to stray charged particles, an off-axis structure is interposed between the resonant structure and the detector surface of the photo-multiplier. By providing the off-axis structure with at least one reflective surface, photons are reflected toward the detector surface of the photo-multiplier while at the same time absorbing stray charged particles. Stray particles may be absorbed by the reflective surface or by any other part of the off-axis structure. The off-axis structure may additionally be provided with an electrical bias and/or an absorbing coating for absorbing stray charged particles.
Abstract:
The present invention relates to a method and system of array imaging that extends or maximizes the longevity of the sensor array by minimizing the effects of photobleaching. The imaging system has a light source, a variable exposure aperture, and a variable filter system. The system extends the longevity of sensors by (1) using the variable exposure aperture to selectively expose sections of the sensor array containing representative numbers of each type of sensor, and/or (2) using the variable filter system to control the intensity of the excitation light, providing only the intensity required to induce the appropriate excitation and increasing that intensity over time as necessary to counteract the effects of photobleaching.
Abstract:
A sun detection sensor assembly for attachment to a thermal imaging device, comprising an elongated tubular body having two ends and a sensor, characterized as Sun TECT sensor, attached to one end, the Sun TECT sensor having a tubular body, an IR window positioned at one end of the tubular body, and a photo a infrared photo transistor positioned within the tubular body, opposite the IR window, the infrared photo transistor having a photo sensitive surface for detecting the exposure from sun when the sun is within a field of view of the Sun TECT Sensor, and an automatic ON/OFF mechanism which is activated by the infrared photo transistor and protecting the thermal imaging device from undesired and harmful infrared radiation.
Abstract:
An anti-glare eye protection apparatus includes an anti-glare eye protection plate, an optical detector, an electromagnetic wave sensor, an electromagnetic wave detector, a user interface, a main controller, and a light transmittance controller. The electromagnetic wave sensor senses an electromagnetic wave generated by a welding or cutting torch using at least two coils. The electromagnetic wave detector compares a signal received through the electromagnetic wave sensor with a reference value. The user interface includes a display for selecting or displaying one of the optical and electromagnetic wave detectors. The main controller applies an electromagnetic wave detector activation signal to the electromagnetic wave detector as the optical detector starts optical detection and monitors changes in a received electromagnetic wave signal based on output of the electromagnetic wave detector. The light transmittance controller controls change in light transmittance of the eye protection plate according to a signal output from the main controller.
Abstract:
An infrared sensor has a groove formed at a peripheral portion of an optical filter in a region opposed to a circumferential region of an opening of a package so as to be continuously located in the peripheral portion of the optical filter. The optical filter has a resistance of about 1 MΩ/cm or less. The package is mainly composed of a metal material. A conductive adhesive is used as an adhesive for joining the optical filter to the package. In a case where the optical filter has a filter body and a thin film made of an insulating material and provided on a surface of the filter body, the groove is formed to have a depth extending from the surface provided with the thin film made of the insulating material to the filter body.