Abstract:
The present technology provides a color-sensing device that includes an electrically-conductive substrate and a bulk heterojunction (BHJ) polymer layer formed on the substrate. The color-sensing device is configured to detect a first color of two colors and produce a first electrical signal that includes a first current response indicating detection of the first color. The color-sensing device is further configured to detect a second color of the two colors and produce a second electrical signal that includes a second current response indicating detection of the second color.
Abstract:
The method and system may be used to provide an indication of a color value for a particular siding sample and to color match a specific siding product to the color value of the siding sample. The system receives a digital image of a siding sample and a desired color value to be matched. A color query module plots this desired color value as a desired color point in a multidimensional color space together with a plurality of color reference points. Each color reference point represents the color value of an existing siding product. The system determines a “distance” between the desired color point and each plotted color reference point within the color space and identifies the siding product associated with the color reference point that is located the shortest distance to the desired color point within the color space.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
Described are systems and methods for automatically adjusting a set of display settings. At least one image sample is displayed at a first display according to display settings of the first display. Electromagnetic radiation generated from the first display is collected. The electromagnetic radiation includes first image data related to the at least one image sample at the first display. An image sample is displayed at a second display according to display settings of the second display. Electromagnetic radiation generated from the second display is collected. The electromagnetic radiation includes second image data related to the image sample at the second display. A margin of error is determined between the first image data and the second image data. The display settings of the second display are adjusted to reduce the margin of error.
Abstract:
A spectral characteristic obtaining apparatus includes a detection unit detecting light quantities in plural wavelength bands from a measurement target, a storage unit storing pre-obtained spectral characteristics of the measurement target, a calculation unit calculating a primary transformation matrix from the light quantities and the pre-obtained spectral characteristics of at least one reference sample and a secondary transformation matrix from one of the pre-obtained spectral characteristics corresponding to a primary wavelength band and another one of the pre-obtained spectral characteristics corresponding to a secondary wavelength band, an estimation unit estimating the spectral characteristics of the measurement target by performing a primary estimation on the light quantities in the plural wavelength bands by using the primary transformation matrix, performing a secondary estimation on a result of the primary estimation by using the secondary transformation matrix, and compositing a result of the secondary estimation with the result of the primary estimation.
Abstract:
Described are systems and methods for automatically adjusting a set of display settings. At least one image sample is displayed at a first display according to display settings of the first display. Electromagnetic radiation generated from the first display is collected. The electromagnetic radiation includes first image data related to the at least one image sample at the first display. An image sample is displayed at a second display according to display settings of the second display. Electromagnetic radiation generated from the second display is collected. The electromagnetic radiation includes second image data related to the image sample at the second display. A margin of error is determined between the first image data and the second image data. The display settings of the second display are adjusted to reduce the margin of error.
Abstract:
An apparatus for measuring a spatially under-sampled Bidirectional Reflectance Distribution Function (BRDF) of a surface. The apparatus may comprise a first light source directed to illuminate the surface from a first illumination direction, and a plurality of sensors positioned to receive light reflected by the surface. The plurality of sensors may comprise first, second and third sensors positioned to receive light reflected by the surface in first, second and third non-coplanar directions. In various embodiments, the apparatus may also comprise a computer in communication with the plurality of sensors. The computer is configured to convert light sensed by the plurality of sensors into a first appearance property of the surface considering the first, second, and third reflectance directions.A method of calculating xDNA, the vector sum of the observed reflectance intensity over a plurality of wavelengths and angles. Methods of using the calculated xDNA for formulating recipes for a surfaces colors. Furthermore, a method for using the calculated xDNA for rendering the surface color.
Abstract:
A method and apparatus for obtaining a color mapping of a dental object. Illumination is directed toward the object over at least a first and second wavelength band, one band at a time. An image of the dental object is captured at each wavelength band to form a set of images of the dental object. For pixels in the captured set of images, an image data value for the pixel corresponds to each of the wavelength bands and calculates interpolated image data values proportional to the spectral reflectance of the dental object, according to the obtained image data values and according to image data values obtained from a reference object at the wavelength bands. Spectral distribution data for a viewing illuminant is obtained and the visual color of the dental object reconstructed according to the calculated interpolated image data values and the obtained spectral distribution of the viewing illuminant.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.