Abstract:
The invention relates to a passive microbolometer (12), comprising a reflective screen (17) and a suspended membrane with the function of radiation absorber, thermometer and electrical connection. The membrane is supported by at least two anchor elements (15) fixed to a support substrate (16). The reflective screen (17) may be embodied by at least one layer (18) of metallic material with a thickness of the order of 500 Å to 2000 Å. The screen (17) is arranged beneath the membrane in electrical contact with the membrane absorber element (13) such as to reduce the area resistance of the unit made up of the screen (17) and the absorbing element (13) and to avoid the absorption of radiation by the latter.
Abstract:
A cooling type infrared rays detecting apparatus is disclosed which prevents a fluctuation of an infrared rays image arising from a variation of the cooling temperature. The infrared rays detecting apparatus includes a dummy element mounted adjacent an infrared rays detecting device on a device mounting portion of an inner tube. The dummy element has a similar structure to that of each of infrared rays detecting elements of the infrared rays detecting device and is formed from the same material as the latter. A temperature variation of the dummy element is detected from a variation in resistance of the dummy element, and an output of the infrared rays detecting device is compensated for in response to the thus detected temperature variation to prevent a possible fluctuation of an infrared rays image arising from a temperature variation. Consequently, an infrared rays image of a high quality can be obtained.
Abstract:
A detector assembly includes a dewar chamber having an aperture and an infrared radiation detector. The detector assembly also includes a mirror disposed adjacent the aperture of the dewar chamber, where the mirror has a reflective surface and an emitting region facing the aperture. The infrared radiation detector is configured to detect first radiation and second radiation from the mirror. The first radiation originates from at least one relatively cold surface in the dewar chamber and reflects off the reflective surface of the mirror. The second warm radiation originates from at least one relatively warm surface at or behind the emitting region. The infrared radiation detector is also configured to detect an artifact caused by a particle in the dewar chamber that blocks a portion of the first or second radiation.
Abstract:
A semiconductor device for measuring IR radiation is disclosed. It comprises a substrate and a cap enclosing a cavity, a sensor pixel in the cavity, comprising a first absorber for receiving said IR radiation, a first heater, first temperature measurement means for measuring a first temperature; a reference pixel in the same cavity, comprising a second absorber shielded from said IR radiation, a second heater, and second temperature measurement means for measuring a second temperature; a control circuit for applying a first/second power to the first/second heater such that the first temperature equals the second temperature; and an output circuit for generating an output signal indicative of the IR radiation based on a difference between the first and second power.
Abstract:
An infrared sensor for temperature sensing comprises a cap covering a substrate; an IR-radiation filtering window in the cap transparent to IR radiation; a first sensing element comprising a set of N thermocouples on the substrate covered by the cap, whose hot junctions may receive radiation; a second sensing element comprising a set of N thermocouples on the substrate covered by the cap whose hot junctions may not receive radiation; first connection modules for connecting a number N1 of thermocouples of the first sensing element, second connection modules for connecting a number N2 of thermocouples of the second sensing; connecting means for connecting an output of the first connection modules of the first sensing element with an output of the second connection modules of the second sensing element, and an output of the combined outputs of the sensing elements.
Abstract:
A measuring apparatus comprises a detector device for detecting a variable to be measured, and a controller operative to control the detector device and generate an output signal indicative of the magnitude of the variable being measured. The detector device comprises a housing on which are mounted two Peltier-Seebeck detectors, the detectors being arranged on the housing such that only the first Peltier-Seebeck detector is exposed, in use, to the variable to be measured. The controller is operative to generate the output signal based on the output of the first Peltier-Seebeck detector and the output of the second Peltier-Seebeck detector so as to account for the effect of the ambient heat on each Peltier-Seebeck detector.
Abstract:
A temperature control apparatus comprises a light-emitting device, a light-emitting device controller, a Peltier device for controlling the temperature of the light-emitting device to a target temperature, a temperature detector for the light-emitting device, a first reference voltage holding unit for holding a voltage corresponding to the target temperature, a reference voltage controller for outputting a holding signal and a switching signal, a second reference voltage holding unit for holding the output voltage of the temperature detector on the basis of the holding signal, a reference voltage switching unit for selecting either the output of the first reference voltage holding unit or the output of the second reference voltage holding unit as a reference voltage, and a Peltier controller for controlling the Peltier device so as to minimize a difference between the output voltage of the temperature detector and the output voltage of the reference voltage switching unit.
Abstract:
The radiation clinical thermometer of the present invention is provided with a light guide tube 15 to guide the infrared radiation from the temperature-measured object, a first infrared sensor 10 for detecting the infrared radiation from the light guide tube 15, a temperature sensitive sensor 12 which generates a reference temperature signal, a reference cavity 17 which has approximately the same temperature condition as the light guide tube 15 and is sealed so as to shut out infrared radiation from outside, a second infrared sensor 11 for detecting the infrared radiation from the reference cavity 17, a temperature computing means 13 for calculating temperature in accordance with the signals from the first infrared sensor 10 and the second infrared sensor 11, a temperature sensitive sensor 12, and a display unit 14 for displaying temperature in accordance with the signal from the temperature computing means 13; and at least either the light guide tube 15 or the reference cavity 17 is tapered off toward the emission inlet of the light guide tube 15 from the first or second infrared sensor 10 or 11 side.