Abstract:
A charge control electrode emitting photoelectrons is disposed just above a wafer (sample) in parallel thereto, and the electrode has a through hole so that ultraviolet light can be irradiated to the wafer through the charge control electrode. Specifically, a metal plate which is formed in mesh or includes one or plural holes is used as the charge control electrode. By disposing the charge control electrode just above the sample in parallel thereto, when negative voltage is applied to the electrode, electric field approximately perpendicular to the wafer is generated. Therefore, photoelectrons are efficiently absorbed in the wafer. Also, by using the charge control electrode having approximately the same size as that of the wafer, charges on a whole surface of the wafer can be removed collectively and uniformly. Therefore, time required for the process can be reduced.
Abstract:
In an electron particle machine for observing, inspecting, processing or analyzing a semiconductor wafer as a substrate or a sample, a light source is installed in a preparation chamber. A chucking stage for chucking the semiconductor wafer with a chuck using static electricity is provided with parts for connecting to earth such that they are in contact with the chucked semiconductor wafer. After the chuck using static electricity is released after observation, inspection, process or analysis, a surface of the semiconductor wafer and the parts for connecting to earth are irradiated with light from the light source. This provides conductivity to the surface of the semiconductor wafer, so that charge accumulated on the semiconductor wafer is removed from the surface through the parts for connecting to earth.
Abstract:
Apparatuses, systems, and methods for providing beams for controlling charges on a sample surface of charged particle beam system. In some embodiments, a module comprising a laser source configured to emit a beam. The beam may illuminate an area adjacent to a pixel on a wafer to indirectly heat the pixel to mitigate a cause of a direct photon-induced effect at the pixel. An electron beam tool configured to detect a defect in the pixel, wherein the defect is induced by the indirect heating of the pixel.
Abstract:
A charge control apparatus for controlling charge on a substrate in a vacuum chamber is described. The apparatus includes a light source emitting a beam of radiation having a divergence; a mirror configured to reflect the beam of radiation, wherein a curvature of a mirror surface of the curved mirror is configured to reduce the divergence of the beam of radiation; and a mirror support configured to rotatably support the curved mirror, wherein a rotation of the mirror varies the direction of the beam of radiation.
Abstract:
A method and a system for imaging an object, the system may include electron optics that may be configured to scan a first area of the object with at least one electron beam; wherein the electron optics may include a first electrode; and light optics that may be configured to illuminate at least one target of (a) the first electrode and (b) the object, thereby causing an emission of electrons between the first electrode and the object.
Abstract:
An object of the present invention is to provide a charged particle beam apparatus that effectively removes electrical charges from an electrostatic chuck.In order to achieve the above object, the charged particle beam apparatus of the present invention includes a sample chamber that maintains a space containing an electrostatic chuck mechanism (5) in a vacuum state; and in which the charged particle beam apparatus includes an ultraviolet light source (6) to irradiate ultraviolet light within the sample chamber, and a irradiation target member irradiated by the ultraviolet light; and the irradiation target member is placed perpendicular to the adsorption surface of the electrostatic chuck.
Abstract:
A charged particle beam apparatus 300 for observing and estimating a sample W by applying a charged particle beam to sample W to detect secondary charged particles, such as electrons emitted from the sample, reflected electrons and backscattered electrons comprises astigmatism adjusting means 17 for adjusting astigmatism of the charged particle beam. Astigmatism adjusting means 17 is supplied with a correction voltage which maximizes a focal estimation value obtained from a pattern formed on sample W. Astigmatism adjusting means 17 is a multipole including a plurality of pairs of electrodes or coils facing each other to place the optical axis of the charged particle beam at the center. Also disclosed is a charged particle beam apparatus 400 capable of observation and estimation of a sample surface in a condition where no charge up exists over the whole sample W.
Abstract:
In the present invention, the structure of an electrification control electrode is changed from a grid type to a slit type and thereby shadows are not formed when a wafer is irradiated with a beam. Further, a beam forming slit is disposed ahead of an electrification control slit, thus the electrification control slit is prevented from being irradiated with an electron beam for preliminary electrification, and thereby secondary electrons which disturb the control of the electrification are inhibited from being generated. The shape of the slit is designed so that the strength of an electron beam may gradually decrease toward both the ends of an electron beam irradiation region in the longitudinal direction thereof. Furthermore, a preliminary static eliminator to remove or reduce the unevenness in an electrification potential distribution which has undesirably been formed earlier is disposed.
Abstract:
A charge control electrode emitting photoelectrons is disposed just above a wafer (sample) in parallel thereto, and the electrode has a through hole so that ultraviolet light can be irradiated to the wafer through the charge control electrode. Specifically, a metal plate which is formed in mesh or includes one or plural holes is used as the charge control electrode. By disposing the charge control electrode just above the sample in parallel thereto, when negative voltage is applied to the electrode, electric field approximately perpendicular to the wafer is generated. Therefore, photoelectrons are efficiently absorbed in the wafer. Also, by using the charge control electrode having approximately the same size as that of the wafer, charges on a whole surface of the wafer can be removed collectively and uniformly. Therefore, time required for the process can be reduced.
Abstract:
A method and a system for imaging an object, the system may include electron optics that may be configured to scan a first area of the object with at least one electron beam; wherein the electron optics may include a first electrode; and light optics that may be configured to illuminate at least one target of (a) the first electrode and (b) the object, thereby causing an emission of electrons between the first electrode and the object.