Abstract:
A method for monitoring ion implantation, comprising: a), providing a control piece and forming a mask layer; b), performing ion implantation process to implant a predetermined dose of impurity ions into the control piece, an area on the control piece uncovered by the mask layer being an impurity implantation area and an area on the control piece covered by the mask layer being an impurity non-implantation area; c), peeling off the mask layer from the control piece; d), performing oxidation treatment on the control piece; and e), respectively measuring thicknesses of the oxide layers on the impurity implantation area and the impurity non-implantation area of the control piece, and monitoring the impurity dose of the ion implantation on the basis of a ratio of the thickness of the oxide layer in the impurity implantation area to the thickness of the oxide layer in the impurity non-implantation area. By this method, it is possible to accurately monitor whether or not the dose of the implanted ions meets the predetermined requirement, and it is possible to effectively avoid the defects of incorrect monitor result caused by the variation of the intrinsic resistance of the semiconductor, improve the accuracy of the monitoring, and thus improve the performance and yield rate of the device.
Abstract:
A detection circuit for accurately detecting a very small foreign material and an inspection/measurement device using the same are provided. The inspection/measurement device includes: an irradiation section that irradiates a laser beam to a surface of a specimen; and a detection section that detects scattered light from the surface of the specimen and generates a detection signal. The detection section includes: a photon counting sensor that outputs M output signals from photo-detecting elements of N pixels (N and N are natural numbers, and M
Abstract:
An electron microscope has a large depth of focus in comparison with an optical microscope. Thus, information is superimposed on one image in the direction of depth. Therefore, it is necessary to accurately specify the three-dimensional position and density of a structure in a specimen so as to observe the three-dimensional structure of the interior of the specimen by using the electron microscope. Furthermore, a specimen that is observed with the optical microscope on a slide glass is not put into a TEM device of the related art. Thus, performing three-dimensional internal structure observation with the electron microscope on a location that is observed with the optical microscope requires very cumbersome preparation of the specimen. By controlling a vector parameter that defines the interrelationship between a primary charged particle beam and the specimen and by irradiation with the primary charged particle beam with a plurality of different vector parameters, images of transmitted charged particles of the specimen that correspond to each of the vector parameters are obtained. Irradiation with the primary charged particle beam is performed on the specimen that is arranged either directly or through a predetermined member on a detector which detects charged particles transmitted through or scattered by the interior of the specimen.
Abstract:
An electron microscope includes a stage, a charged particle beam generator, a plurality of elemental spectrum detectors and a reader. The stage is configured for carrying a sample. The charged particle beam generator is configured for generating a charged particle beam to bombard the sample. The elemental spectrum detectors is configured for detecting X ray emitted from the sample being bombarded by the charged particle beam and outputting a plurality of corresponding spectrum detecting signals. The reader is configured for calibrating a plurality of counting signals generated by the spectrum detecting signals and summing the calibrated counting signals to obtain an elemental spectrum of the sample. The collection time of elemental spectrum of the above-mentioned electron microscope can be shortened. A reader and an acquiring elemental spectrum method applied to the above-mentioned electron microscope are also disclosed.
Abstract:
An electron microscope is provided with a scintillator (7) and a light guide (8). The scintillator (7) has an index of refraction greater than the index of refraction of the light guide (8), and an end surface (72) joined to the light guide (8) is formed from a curved surface with a convex shape on the outside. The scintillator (7) is formed by a Y—Al—O based ceramic sintered body represented by the compositional formula (Ln1-xCex)3M5O12 (wherein Ln represents at least one element selected from the group consisting of Y, Gd, La, and Lu, and M represents either or both of Al and Ga).
Abstract:
A light signal detecting circuit, a light amount detecting device, and a charged-particle-beam device capable of discriminating the signal component of a small amount of light from the signal component of noise due to dark current. A data-processing-unit detects pulses from digital voltage signal corresponding to an amount of light obtained by an amplifier and an A-D converter, calculates a crest value as the maximum voltage value of each pulse, and stores the occurrence frequency of each calculated crest value in a frequency occurrence storage area. A data analysis unit compares a previously-determined frequency lower limit with the occurrence frequency of each crest value in ascending order of the crest values and sets a pulse determination threshold to the first crest value whose occurrence frequency is equal to or smaller than the frequency lower limit. The threshold processing unit thus outputs the digital signal higher than the pulse determination threshold.
Abstract:
A phase analyzer includes a principal component analysis section that performs principal component analysis on elemental map data that represents an intensity or concentration distribution corresponding to each element to calculate a principal component score corresponding to each unit area of the elemental map data, a scatter diagram generation section that plots the calculated principal component score to generate a scatter diagram of the principal component score, a peak position detection section that detects a peak position from the scatter diagram, a clustering section that calculates a distance between each point and each peak position within the scatter diagram, and classifies each point within the scatter diagram into a plurality of groups based on the distance, and a phase map generation section that generates a phase map based on classification results of the clustering section.
Abstract:
An electron microscope is provided with a scintillator (7) and a light guide (8). The scintillator (7) has an index of refraction greater than the index of refraction of the light guide (8), and an end surface (72) joined to the light guide (8) is formed from a curved surface with a convex shape on the outside. The scintillator (7) is formed by a Y—Al—O based ceramic sintered body represented by the compositional formula (Ln1-xCex)3M5O12 (wherein Ln represents at least one element selected from the group consisting of Y, Gd, La, and Lu, and M represents either or both of Al and Ga).
Abstract:
A STEM system is disclosed wherein an imaging system is used to image the electron scatter pattern plane of the HAADF detector onto a two-dimensional array detector. A data acquisition system stores and processes the data from the two-dimensional array detector. For each illumination pixel of the STEM, one frame of data is generated and stored Each frame includes data of all scattered angles and can be analyzed in real time or in off-line at any time after the scan. A method is disclosed for detecting electrons emitted from a sample by detecting electrons scattered from the sample and generating plurality of corresponding signals, each signal indicative of scattering angle of a scattered electron; generating a plurality of signal groups, each signal group being a collection of signals of a user selected scattering angle.
Abstract:
The invention relates to a method for determining a distance between charged particle beamlets in a multi-beamlet exposure apparatus. The apparatus is provided with a sensor comprising a converter element for converting charged particle energy into light and a light sensitive detector provided with a two-dimensional pattern of beamlet blocking and non-blocking regions. The method comprises scanning a first beamlet over the pattern, receiving light generated by the converter element, and converting the received light into a first signal. Then the two-dimensional pattern and the first beamlet are moved relatively with respect to each other over a predetermined distance. Subsequently, the method comprises scanning a second beamlet over the pattern, receiving light generated by the converter element, and converting the received light into a second signal. Finally, the distance between the first beamlet and second beamlet is determined based on the first signal, the second signal and the predetermined distance.