Abstract:
In a multi-energy ion implantation process, an ion implanting system having an ion source, an extraction assembly, and an electrode assembly is used to implant ions into a target. An ion beam having a first energy may be generated using the ion source and the extraction assembly. A first voltage may be applied across the electrode assembly. The ion beam may enter the electrode assembly at the first energy, exit the electrode assembly at a second energy, and implant ions into the target at the second energy. A second voltage may be applied across the electrode assembly. The ion beam may enter the electrode assembly at the first energy, exit the electrode assembly at a third energy, and implants ions into the target at the third energy. The third energy may be different from the second energy.
Abstract:
An ion beam apparatus including: an ion source configured to emit an ion beam; a condenser lens electrode configured to condense the ion beam; a condenser lens power source configured to apply a voltage to the condenser lens electrode; a storage portion configured to store, a first voltage value, a second voltage value, a third voltage value, and a fourth voltage value; and a control portion configured to retrieve the third voltage value from the storage portion and set the retrieved third voltage value to the condenser lens power source when an observation mode is switched to a wide-range observation mode, and retrieve the fourth voltage value from the storage portion and set the retrieved fourth voltage value to the condenser lens power source when a processing mode is switched to the wide-range observation mode.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
One embodiment relates to an ion implanter. The ion implanter includes an ion source to generate an ion beam, as well as a scanner to scan the ion beam across a surface of a workpiece along a first axis. The ion implanter also includes a deflection filter downstream of the scanner to ditheredly scan the ion beam across the surface of the workpiece along a second axis.
Abstract:
A system and method for controlling a dosage profile is disclosed. An embodiment comprises separating a wafer into components of a grid array and assigning each of the grid components a desired dosage profile based upon a test to compensate for topology differences between different regions of the wafer. The desired dosages are decomposed into directional dosage components and the directional dosage components are translated into scanning velocities of the ion beam for an ion implanter. The velocities may be fed into an ion implanter to control the wafer-to-beam velocities and, thereby, control the implantation.
Abstract:
The present invention provides methods, devices, and systems for analyzing defects in an object such as a semiconductor wafer. In one embodiment, it provides a method of characterizing defects in semiconductor wafers during fabrication in a semiconductor fabrication facility. This method comprises the following actions. The semiconductor wafers are inspected to locate defects. Locations corresponding to the located defects are then stored in a defect file. A dual charged-particle beam system is automatically navigated to the vicinity defect location using information from the defect file. The defect is automatically identified and a charged particle beam image of the defect is then obtained. The charged particle beam image is then analyzed to characterize the defect. A recipe is then determined for further analysis of the defect. The recipe is then automatically executed to cut a portion of the defect using a charged particle beam. The position of the cut is based upon the analysis of the charged particle beam image. Ultimately, a surface exposed by the charged particle beam cut is imaged to obtain additional information about the defect.
Abstract:
A coating is applied to a work piece in a charged particle beam system without directing the beam to work piece. The coating is applied by sputtering, either within the charged particle beam vacuum chamber or outside the charged particle beam vacuum chamber. In one embodiment, the sputtering is performed by directing the charged particle beam to a sputter material source, such as a needle from a gas injection system. Material is sputtered from the sputter material source onto the work piece to form, for example, a protective or conductive coating, without requiring the beam to be directed to the work piece, thereby reducing or eliminating damage to the work piece.
Abstract:
Embodiments of methods of modifying surface features on a workpiece with a gas cluster ion beam are generally described herein. Other embodiments may be described and claimed.
Abstract:
A system, method, and apparatus for mitigating contamination associated with ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and selectively travels through the mass analyzer to the end station, based on a position of a beam stop assembly. The beam stop assembly selectively prevents the ion beam from entering and/or exiting the mass analyzer, therein minimizing contamination associated with an unstable ion source during transition periods such as a start-up of the ion implantation system.