Abstract:
A wiring substrate includes an insulation layer, separated wires formed on a first surface of the insulation layer, a first plating layer formed on a first surface of each of the wires, a reflection layer including a first opening that exposes at least a portion of the first plating layer as a connection pad, and an electronic component mounted on a second surface of each of the wires, which is located on an opposite side of the first surface of each of the wires. The electronic component is embedded in the insulation layer.
Abstract:
A packaging substrate is disclosed, which includes: a dielectric layer; a circuit layer embedded in and exposed from a surface of the dielectric layer, wherein the circuit layer has a plurality of conductive pads; and a plurality of conductive bumps formed on the conductive pads and protruding above the surface of the dielectric layer. As such, when an electronic element is disposed on the conductive pads through a plurality of conductive elements, the conductive elements can come into contact with both top and side surfaces of the conductive bumps so as to increase the contact area between the conductive elements and the conductive pads, thereby strengthening the bonding between the conductive elements and the conductive pads and preventing delamination of the conductive elements from the conductive pads.
Abstract:
The present invention provides a structure of a printed circuit board and a manufacturing method thereof. The method includes: (a) forming a circuit pattern on an insulating layer in which a seed layer is formed; (b) embedding the circuit pattern into the insulating layer by a press method; and (c) removing the seed layer. According to the present invention, a fine pattern may be formed without occurring alignment problem by forming a circuit pattern directly on an insulating layer and reliability of the formed fine pattern may be increased by performing a process of embedding protruded circuits into the insulating layer. In addition, possibility of inferior circuit occurring due to ion migration between adjacent circuits may be reduced by performing over-etching a circuit layer to be lower than a surface of the insulating layer during the etching process of removing a seed layer.
Abstract:
A resin composition for packaging, an insulating film and a printed circuit board manufactured with the resin composition, and a method of manufacturing a printed circuit board with the resin composition are provided. The resin composition for packaging includes an epoxy resin, and inorganic filler particles dispersed in the epoxy resin, and an aspect ratio of the inorganic filler particles is 1.0 or more and 3.0 or less.
Abstract:
A package structure includes a lead frame, a selective-electroplating epoxy compound, conductive vias and a patterned circuit layer. The lead frame includes a metal stud array having metal studs. The selective-electroplating epoxy compound covers the metal stud array. The selective-electroplating epoxy compound includes non-conductive metal complex. The conductive vias are directly embedded in the selective electroplating epoxy compound to be respectively connected to the metal studs and extended to a top surface of the selective-electroplating epoxy compound. Each of the conductive vias includes a lower segment connected to the corresponding metal stud and an upper segment connected to the lower segment and extended to the top surface, and a smallest diameter of the upper segment is greater than a largest diameter of the lower segment. The patterned circuit layer is directly disposed on the top surface and electrically connected to the conductive vias.
Abstract:
A method of making a multi-layer micro-wire structure includes providing a substrate having a substrate edge and first and second layers formed over the substrate. One or more micro-channels are imprinted in each of the first and second layers and first and second micro-wires located in the imprinted micro-channels, the micro-wires forming at least a portion of an exposed connection pad in each layer. The second layer edge is farther from the substrate edge than the first layer edge for at least a portion of the second layer edge so that the first connection pads are exposed through the second layer.
Abstract:
Disclosed are a method of manufacturing a metal wiring buried flexible substrate and a flexible substrate manufactured by the same. The method includes coating a sacrificial layer including a polymer soluble in water or an organic solvent, or a photodegradable polymer on a substrate (Step 1), forming a metal wiring on the sacrificial layer in Step 1 (Step 2), forming a metal wiring buried polymer layer by coating a curable polymer on the sacrificial layer including the metal wiring formed thereon in Step 2 and curing (Step 3) and separating the polymer layer in Step 3 from the substrate in Step 1 by removing through dissolving in the water or the organic solvent or photodegrading only the sacrificial layer present between the substrate in Step 1 and the polymer layer in Step 3 (Step 4).
Abstract:
A multilayer wiring board includes wiring bodies each including an insulating layer, a conductor layer embedded in the insulating layer and having exposed surface on first surface of the insulating layer, and a conductor post formed on embedded surface of the conductor layer on the opposite side and having end surface on second surface of the insulating layer. The bodies include first and second bodies forming outermost layers on the opposite sides, the exposed surface is recessed from the first surface of the insulating layer in the first body, the end surface is recessed from the second surface in the second body in recess amount greater than that of the exposed surface in the first body, the post of the first body has the exposed surface bonded to the conductor layer of an adjacent body, the second body has the conductor layer bonded to the post of an adjacent body.
Abstract:
A packaging substrate is provided, including a substrate body and conductive pillars. The substrate body has a first surface and a second surface opposite to the first surface. The first surface has a plurality of first conductive pads, and the second surface has a die attach area and a peripheral area surrounding the die attach area. The die attach area has a plurality of second conductive pads embedded therein, wherein top surfaces of the second conductive pads are exposed from the second surface, and the die attach area of the second surface is fully exposed. The conductive pillars are correspondingly disposed on the second conductive pads and have first ends and opposite second ends. The first ends are closer than the second ends from the second conductive pads, and the first ends have a width bigger than a width of the second ends. A fabricating method thereof is also provided.
Abstract:
A method of manufacturing a multilayer substrate structure includes the steps of pre-treatment, pressing and post-treatment. A carrier plate provided with a circuit pattern layer is pressed against a plastic sheet. An interlayer connection pad is formed by drilling and filling the lower surface of the plastic sheet. The carrier plate, the plastic sheet, another plastic sheet and another carrier plate with a circuit pattern layer are pressed together, and then drilled/filled to form a multilayer stacked structure such that the two circuit pattern layers are indirectly and electrically connected to the interlayer connection pad, respectively. Therefore, it is possible to overcome the problem due to alignment tolerance by using the interlayer connection pad wider than alignment tolerance, and stacking the circuit layers, each having much finer line and smaller pitch.