Abstract:
A printed circuit board substrate includes an insulation matrix and a waterproof layer. The insulation matrix includes a first surface and a second surface at an opposite side thereof to the first surface. The waterproof layer is formed in the insulation matrix and is arranged between the first surface and the second surface for blocking water from passing therethrough in a thicknesswise direction of the insulation matrix.
Abstract:
Provided are an antenna circuit constituent body for an IC card/tag, which is capable of enhancing a Q value by reducing a permittivity of a resin film of which a base material is made; and an IC card. The antenna circuit constituent body (10) for an IC card/tag comprises: the base material (11) made of the resin film; and circuit pattern layers (131 and 132) each formed on each of both sides of the base material (11) and made of aluminum foil. The circuit pattern layer (131) includes a coiled pattern layer. Parts of the circuit pattern layers (131 and 132), which mutually face each other; and a part of the base material (11), which is interposed between the parts of the circuit pattern layers (131 and 132), constitute a capacitor. The circuit pattern layers (131 and 132) are electrically connected by means of crimping parts (13a and 13b). The base material (11) includes a plurality of void-state-air layers. A relative density of the base material (11) with respect to a density of a resin is less than or equal to 0.9. An average volume of the void-state-air layers is greater than or equal to 2 μm3 and less than or equal to 90 μm3.
Abstract:
A method for manufacturing a circuit board featuring conductive patterns, said method comprising the following steps of:i) affixing a conductive layer, such as a metal foil (3), to a substrate material (1) selectively, such that a part of the conductive layer, such as the metal foil (3), comprising desired areas (3a) for the final product and narrow areas (3c) between the final product's conducting areas, is affixed to the substrate material (1) by means of a bond (2), and removal-intended more extensive areas (3b) of the conductive layer, for example the metal foil (3), are left substantially unattached to the substrate material in such a way that the removable area (3b) is in attachment with the substrate material (1) by not more than its edge portion to be patterned in a subsequent step ii) and possibly by sites which preclude a release of the removable areas prior to a step iii); ii) patterning, by a removal of material, the conductive layer, such as the metal foil (3), from narrow gaps between the desired conducting areas (3a), and from an outer periphery of the area (3b) removable in a solid state, for establishing conductor patterns; iii) removing the removable areas (3b), not affixed to the substrate material (1), from the conductive layer, such as the metal foil (3), in a solid state after the conductive layer's edge area, which was removed from the removable area's outer periphery during the course of step ii), no longer holds the removable areas (3b) attached by their edges to the substrate material.
Abstract:
A circuit board and a circuit apparatus using the same which can prevent displacement and film exfoliation ascribable to thermal expansion, and suppress a drop in reliability at increasing temperatures. The circuit board of the circuit apparatus includes a metal substrate having pierced holes as a core member. Protrusions are formed on the top ends of the pierced holes, and depressions are formed in the bottom ends of the pierced holes. Wiring pattern layers are formed on both sides of this metal substrate via respective insulating layers. In order to establish electrical connection between the wiring pattern layers, a conductor layer which connects the wiring pattern layers is formed through the metal substrate via the pierced holes. The conductor layer thereby establishes electrical conduction between the wiring pattern layers. Furthermore, a semiconductor chip is directly connected to the surface side of the circuit board via solder balls.
Abstract:
A printed circuit board includes a mounting hole for receiving a connector pin of either of a first SMC and a second SMC, and a signal line. The signal line is electrically connected to the mounting hole by a conductive layer arranged in and about the mounting hole.
Abstract:
A method is provided for the punching of a bridge break and thereafter sealing the bridge break during the injection molding process of the lead frame. The bridge breaking tool is placed over the bridge that is to be broken. The collar presses down on the circuit and the punch presses down on the bridge with enough force to form the bridge break. Once the bridge break is formed the punch is retracted from the cavity of the template and molten polymer is injected to flow around the ends of the bridge break. The bridge breaking tool's hold down collars and retracted punch form a molding area for molten polymer to flow over the bridge break and the exposed circuit area. The bridge breaking tool is retracted after the bridge break is encased in the cured molten polymer and the cured molten polymer forms a lead frame structure.
Abstract:
A driver module structure includes a flexible circuit board (2) provided with a wiring pattern (7), a semiconductor device mounted on the flexible circuit board (2), and an electrically conductive heat-radiating member (4) joined to the semiconductor device. The wiring pattern (7) includes a ground wiring pattern (8). The flexible circuit board (2) has a cavity (9) that exposes a portion of the ground wiring pattern (8). The exposed portion of the ground wiring pattern (8) and the heat-radiating member (4) are connected to establish electrical continuity via a member (11) that is fitted into the cavity (9).
Abstract:
A method for manufacturing an electronic device is provided. The method includes: pressure-bonding a plurality of terminals of an electronic component to a plurality of electrodes formed on a surface of a transparent substrate, respectively, via an anisotropic conductive film to mount the electronic component on the transparent substrate; obtaining an image of the electrodes by imaging the transparent substrate with the electronic component mounted thereon from backside of the transparent substrate; measuring the number of indentations for each said electrode using the image of the electrode, the indentation being formed when the electrode is pressed by a conductive particle in the anisotropic conductive film; calculating an average and a standard deviation of the number of indentations per electrode throughout the transparent substrate; and calculating a probability that the number of indentations per electrode is less than a reference value on basis of the average and the standard deviation.
Abstract:
Light modules are provided. A light module includes a circuit board, a lighting element electrically connected to the circuit board, and a first thermal plate. The circuit board has a through hole communicating a first side and a second side thereof. The lighting element is disposed on the first side of the circuit board and located corresponding to the through hole. The first thermal plate is disposed on the second side of the circuit board, opposite to the first side, and comprises a first protrusion extending through the through hole and connecting the lighting element.
Abstract:
A tape carrier for semiconductor device has a resin tape provided with an opening section for bonding, and a wiring lead formed on the resin tape. The wiring lead has a notched section disposed in the opening section and including a notch width WN, and a lead width WL at a position where a bonding tool contacts the wiring lead, and a ratio of the notch width WN to the lead width WL is more than 0.5 and less than 0.685. A method for making the tape carrier includes laminating the metal foil on one surface of the resin tape including the opening section for bonding, and forming the wiring lead in the metal foil by photolithography such that the wiring lead has the notched section disposed in the opening section and including the notch width WN, and the lead width WL at the position where the bonding tool contacts the wiring lead.
Abstract translation:用于半导体器件的带载体具有设置有用于接合的开口部分的树脂带和形成在树脂带上的布线引线。 布线引线具有设置在开口部分中并且在接合工具接触布线的位置处具有切口宽度W N N和引线宽度W L L的切口部分 引线,并且切口宽度W N N与引线宽度W L的比率大于0.5且小于0.685。 制造带载体的方法包括将金属箔层压在包括用于接合的开口部分的树脂带的一个表面上,并且通过光刻法在金属箔中形成布线引线,使得布线引线具有设置在开口中的切口部分 并且包括切口宽度W N N和在接合工具与布线引线接触的位置处的引线宽度W L L。