Abstract:
A flexible cable includes an elongated flexible substrate including first and second surfaces on opposite sides thereof, a first capacitor electrode provided on the first surface side of the flexible substrate, the first capacitor electrode extending from a first end of the flexible substrate toward a second end of the flexible substrate, a second capacitor electrode provided on the second surface side of the flexible substrate, the second capacitor electrode extending from the second end of the flexible substrate toward the first end of the flexible substrate, a first connection portion provided at an end of the first capacitor electrode located at the first end of the flexible substrate, and a second connection portion provided at an end of the second capacitor electrode located at the second end of the flexible substrate.
Abstract:
A package substrate free of malfunction or error even with an IC chip in a high frequency range, particularly an IC chip with a frequency exceeding 3 GHz, is provided. A conductor layer 34P on a core substrate 30 is formed to have a thickness of 30 μm and a conductor circuit 58 on an interlayer resin insulating layer 50 is formed to have a thickness of 15 μm. By making the conductor layer 34P thick, it is possible to increase a volume of the conductor itself and decrease resistance. Further, by employing the conductor layer 34 as a power supply layer, it is possible to improve a capability of supplying power to the IC chip.
Abstract:
A multilayer printed wiring board includes a core substrate, a resin insulation layer laminated on the core substrate and a capacitor section coupled to the resin insulating layer. The capacitor section includes a first electrode including a first metal and configured to be charged by a negative charge, and a second electrode including a second metal and opposing the first electrode, the second electrode configured to be charged by a positive charge. A dielectric layer is interposed between the first electrode and second electrode, and an ionization tendency of the first metal is larger than and ionization tendency of the second metal.
Abstract:
A multilayer printed wiring board includes a core substrate having a through-hole formed through the substrate, an interlayer insulation layer formed on the substrate and having a via conductor formed through the insulation layer, and a conductor layer formed on the insulation layer and connected to the via in the insulation layer. The substrate has multiplayer insulation structure, outer power layer formed on surface of the structure, outer ground layer formed on opposite surface of the structure, inner power layer formed inside the structure and inner ground layer formed inside the structure, each of the inner layers has tapered end having angle satisfying 2.8
Abstract:
A redistribution board includes a first conductive layer including a redistribution structure for low voltage signals, a second conductive layer including a redistribution structure for high voltage signals, and a non-conductive layer. The second conductive layer is spaced apart from the first conductive layer by the non-conductive layer. The redistribution board further includes a conductive connector extending from a mounting surface of the redistribution board to the second conductive layer. The conductive connector is surrounded by a low voltage trace of the first conductive layer.
Abstract:
A LED based lighting apparatus is disclosed. The light engine used in the lighting apparatus may use a multi-layer metal core printed circuit board and have a plurality of LED groups that are independently controllable by a control unit. The power supply input and return paths connected to each LED group may be implemented on different layers to allow a compact footprint that may be used with traditional fluorescent encasements with relatively little modification.
Abstract:
A structure includes a first conductor plane; a plurality of second conductor planes, at least a portion thereof being provided facing the first conductor plane; a transmission line that is provided with at least a portion thereof facing one conductor plane of the first conductor plane and the second conductor plane, and that is disposed on an opposite side of the other conductor plane with respect to the one conductor plane; and a first conductor connecting portion that electrically connects the transmission line with the other conductor plane, and a unit structure that includes at least the second conductor plane, the transmission line, and the first conductor connecting portion is repeatedly disposed.
Abstract:
A waveguide structure or a printed-circuit board is formed using a plurality of unit structures which are repetitively aligned in a one-dimensional manner or in a two-dimensional manner. The unit structure includes first and second conductive planes which are disposed in parallel with each other, a transmission line having an open end which is formed in a layer different from the first and second conductive planes and positioned to face the second conductive plane, and a conductive via electrically connecting the transmission line to the first conductive plane.
Abstract:
An electromagnetic bandgap structure and a printed circuit board that solve a mixed signal problem are disclosed. In accordance with embodiments of the present invention, the electromagnetic bandgap structure includes a first metal layer; a first dielectric layer, stacked in the first metal layer; a second metal layer, stacked in the first dielectric layer, and having a holed formed at a position of the second dielectric layer; a second dielectric layer, stacked in the second metal layer; a metal plate, stacked in the second dielectric layer; a first via, penetrating the hole formed in the second metal layer and connecting the first metal layer and the metal plate; a third dielectric layer, stacked in the metal plate and the second dielectric layer; a third metal layer, stacked in the third dielectric layer; and a second via, connecting the second metal layer to the third metal layer.
Abstract:
Disclosed is an electrical isolator circuit comprising an input stage comprising first and second inputs, the input stage being configured to receive an input voltage signal; an output stage comprising first and second outputs electrically connected across a load capacitor; and a DC isolator comprising a first capacitor between said first input and said first output and second capacitor between said second input and said second output. The first and second plates of each of the first, second and load capacitors are defined by conductive layers of a printed circuit board and the dielectric of each of the first, second and load capacitors are defined by a non-conducting part of the printed circuit board.