Abstract:
An enamel substrate for mounting light emitting elements includes a core metal, an enamel layer that is covering on a surface of the core metal, and one or more through holes. In this enamel substrate for mounting light emitting elements, the core metal is exposed at inner surfaces of the through holes.
Abstract:
A method is for making a structural printed wiring board panel that includes a multilayer printed wiring board having opposing, outer faces and interlayer interconnects that route RF, power and control signals. Connection areas are formed in or on at least on one face for connecting the interlayer interconnects and any electrical components. A metallic face sheet is secured onto at least one outer face, adding structural rigidity to the multilayer printed wiring board. A metallic face sheet can have apertures positioned to allow access to connection areas. RF components can be carried by a face sheet and operatively connected to connection areas. Antenna elements can be positioned on the same or an opposing face sheet and operatively connected to RF components to form a phased array printed wiring board (PWB) panel.
Abstract:
A printed wiring board includes a plurality of conductor plates that includes at least one conductor plate that is used as a lead for electrical connection with an external circuit, the conductor plates being separated spatially from one another; an insulating layer formed on or across the conductor plates or both on and across the conductor plates; and a plurality of wiring patterns formed on the insulating layer. At least one of the conductor plates is electrically connected with at least one of the wiring patterns through a via-hole.
Abstract:
A disk drive suspension interconnect, and method therefor. The interconnect has a metal grounding layer, a metal conductive layer and an insulative layer between the metal grounding layer and the conductive metal layer. A circuit component such as a slider is electrically connected to the conductive layer along a grounding path from the circuit component and the conductive layer to the metal grounding layer through an aperture in the insulative layer. For improved electrical connection a tie layer is provided through the insulative layer onto the grounding layer in bonding relation with the ground layer. A conductor is deposited onto both the conductive metal layer and the tie layer in conductive metal layer and tie layer bonding relation, and the circuit component is thus bonded to the grounding layer by the conductor.
Abstract:
A multi-layered interconnect structure and method of formation. In a first embodiment, first and second liquid crystal polymer (LCP) dielectric layers are directly bonded, respectively, to first and second opposing surface of a thermally conductive layer, with no extrinsic adhesive material bonding the thermally conductive layer with either the first or second LCP dielectric layer. In a second embodiment, first and second 2S1P substructures are directly bonded, respectively, to first and second opposing surfaces of a LCP dielectric joining layer, with no extrinsic adhesive material bonding the LCP dielectric joining layer with either the first or second 2S1P substructures.
Abstract:
An insulating resin layer (30) is formed on a metal substrate (20), and a wiring is formed on the insulating resin layer (30). A circuit composed of a circuit element (50) and a passive element (60) is formed on the wiring (40), and the metal substrate (20) is covered with an over coat (80) and a sealing resin member (90). The insulating resin layer (30) is provided with an opening (31) so that a part of the metal substrate (20) is exposed therefrom. The exposed part of the metal substrate (20) is connected to one terminal of a capacitor (62) through a conductive wire (42), and the other terminal of the capacitor (62) is connected to the ground potential.
Abstract:
A circuit device of the present invention includes a wiring board 45, and circuit elements such as semiconductor elements 32 mounted on the wiring board 45. The wiring board 45 includes: a conductive pattern 12, which is a metal core layer; a first insulating layer 14 and a second insulating layer 16 respectively covering an upper surface and a lower surface of the conductive pattern 12; and a first wiring layer 18 and a second wiring layer 20 formed respectively on an upper surface of the first insulating layer 14 and a lower surface of the second insulating layer 16. The conductive pattern 12 is made of rolled metal. With this configuration, the thermal resistance of the conductive pattern 12, which is the metal core, is reduced, and the thermal dissipation of the entire device can be improved.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
A production method of a suspension board with circuit includes the steps of forming, on a metal supporting board, an insulating layer formed with a first opening, forming a metal thin film on the insulating layer and on the metal supporting board exposed from the first opening, forming, on a surface of the metal thin film, a conductive layer having terminal portions forming, on the terminal portions, a metal plating layer by electrolytic plating using the metal supporting board as a lead, forming a second opening in a portion of the metal supporting board opposing the first opening, and partially etching the metal supporting board to form the suspension board with circuit and a support frame. In the step of forming the insulating layer, the first opening is formed in the insulating layer in which the supporting frame is formed.
Abstract:
An enamel substrate for mounting light emitting elements includes a core metal, an enamel layer that is covering on a surface of the core metal, and one or more through holes. In this enamel substrate for mounting light emitting elements, the core metal is exposed at inner surfaces of the through holes.