Abstract:
A printed circuit board has a first solder land, a second solder land, and a signal line pattern. The first solder land is configured to be soldered with an electronic part. The second solder land is configured to accumulate solder, the second solder land being disposed on a downstream side of the first solder land as viewed in a direction in which the printed circuit is carried. The signal line pattern includes an exposed part that is not covered with a resist, the exposed part being disposed between the solder land and the solder bridge prevention land.
Abstract:
Provided is a multilayer chip capacitor including a capacitor body having first and second capacitor units arranged in a lamination direction; and a plurality of external electrodes formed outside the capacitor body. The first capacitor unit includes at least one pair of first and second internal electrodes disposed alternately in an inner part of the capacitor body, the second capacitor unit includes a plurality of third and fourth internal electrodes disposed alternately in an inner part of the capacitor body, and the first to fourth internal electrodes are coupled to the first to fourth external electrodes. The first capacitor unit has a lower equivalent series inductance (ESL) than the second capacitor unit, and the first capacitor unit has a higher equivalent series resistance (ESR) than the second capacitor unit.
Abstract:
A printed board is mounted with a chip-type solid electrolytic capacitor of a four-terminal structure where a pair of positive electrode terminals are disposed at opposite positions and a pair of negative electrode terminals are disposed at opposite positions on a mounting surface. The printed board has a pair of positive electrode patterns and a pair of negative electrode patterns to which the positive electrode terminals and negative electrode terminals of the chip-type solid electrolytic capacitor are connected, respectively. The printed board further has an inductor section that is insulated from the negative electrode patterns, and electrically connects the positive electrode patterns.
Abstract:
A flexible circuit board includes a base substrate, a driving chip, an input transmission line, an output transmission line and a connecting transmission line. The driving chip is on a surface of the base substrate. The input transmission line is on the surface of the base substrate and electrically connected to an input terminal of the driving chip. The output transmission line is on the surface of the base substrate and electrically connected to an output terminal of the driving chip. The input transmission line is electrically connected to the output transmission line through the connecting transmission line.
Abstract:
The invention provides a method and device for building one or more passive components into a chip scale package. The method includes the steps of selecting a passive component having a terminal pitch that is a multiple of the package ball pitch of a chip scale package and mounting the selected passive component terminals to ball sites of the package. A preferred embodiment of the invention uses a single metal layer polyamide tape as the substrate of the package. Additional preferred embodiments of the invention are disclosed in which the terminal pitch multiple of the package ball pitch is one or two. Devices corresponding to the disclosed methods are also disclosed.
Abstract:
An electronic assembly includes a substrate and at least one surface mounted electronic component. The substrate includes a first side and a second side opposite the first side. The first side of the substrate includes a plurality of conductive traces formed thereon. The plurality of conductive traces includes a first conductive trace and a second conductive trace. The electronic component is electrically coupled between the first and second conductive traces. A component body of the electronic component is subject to interaction with a flux, which is utilized during electrical coupling of the electronic component to the first and second conductive traces, to form a current leakage path. The substrate is configured to prevent the formation of the current leakage path.
Abstract:
Provided is a hybrid integrated circuit device which can more effectively stabilize a circuit configured to operate at a high speed. A hybrid integrated circuit device of the embodiment includes a metal substrate provided with an insulating layer on a surface thereof, a conductive pattern formed on a surface of the insulating layer, a semiconductor element fixed onto the conductive pattern, a lead as external connecting means fixed to the conductive pattern in the periphery of the metal substrate, and a contact portion for electrically connecting the conductive pattern electrically connected to the semiconductor element to the metal substrate in the vicinity of the semiconductor element.
Abstract:
A semiconductor package provided with an interconnection layer including an interconnection pattern and pad formed on an insulating substrate or insulating layer, a protective layer covering the interconnection layer except at the portion of the pad and the insulating substrate or insulating layer, and an external connection terminal bonded with the pad exposed from the protective layer, the pad to which the external connection terminal is bonded being comprised of a plurality of pad segments, sufficient space being opened for passing an interconnection between pad segments, and the pad segments being comprised of at least one pad segment connected to an interconnection and other pad segments not connected to interconnections.
Abstract:
An integrated circuit package and land side capacitor with reduced power delivery loop inductance. The capacitor pads have vias that lie underneath the land side capacitor, and have interposed digits.
Abstract:
A fan housing of a fan unit includes a housing wall standing from the surface of a printed circuit board. The printed circuit board serves to establish the fan housing in cooperation with the housing wall. The fan housing further includes a ceiling wall connected to the housing wall. The ceiling wall extends along a datum plane parallel to the surface of the printed circuit board. A high speed airflow can be generated within the fan housing. The airflow promotes the heat radiation from the printed circuit board. An electrically conductive wiring pattern extending over the surface of the printed circuit board may further promote the heat radiation from the printed circuit board.