Abstract:
A method for manufacturing a circuit board system comprising mechanical protection of electrical components is presented. The circuit board system comprises a circuit board (101) furnished with electrical components (103-111) and a protection element (102) attached to areas of the circuit board which are free from the electrical components. The protection element has thickness in the direction perpendicular to the circuit board and it is shaped to leave the electrical components unscreened in the direction perpendicular to the circuit board. Thus, the protection element constitutes barriers protecting the electrical components but still allows the electrical components to be accessed from the direction perpendicular to the circuit board for example in a flying probe testing. Furthermore, the protection element provides electrical connections between functional entities of the circuit board system.
Abstract:
A circuit board comprises a plurality of layers, first and second reference conductive vias extending in a vertical direction through at least a portion of the plurality of layers, first and second signal conductive vias extending in the vertical direction between and spaced apart in a horizontal direction from the first and second reference conductive vias through at least a portion of the plurality of layers, and a dielectric region extending in the vertical direction between the first and second signal conductive vias. An air via extends in the vertical direction through the dielectric region between the first and second signal conductive vias. An anti-pad extends in the horizontal direction between the first and second reference conductive vias and surrounding in the horizontal direction the first and second signal conductive vias, the air via, and the dielectric region.
Abstract:
A lamp includes a collar with internal and outer surfaces, where two or more connection pins extend from the internal surface of the collar. At least two connection pins have a head portion distal from the collar internal surface. The head portions include a slot. The lamp includes a light source with at least two external lead-in wires. The lead-in wires are located within respective slots and are mechanically coupled to respective surfaces of the slots in a press-fit manner which may be free of wrapping, winding, twisting, or soldering. A PCB disposed inside the lamp has two opposing surfaces and a rim between the two opposing surfaces. There are conductive surfaces disposed on at least one of the rim and one of the opposing surfaces at positions corresponding to connection pin slots. The PCB is located between connection pins with the conductive surfaces in electrical communication with the lead-in wires.
Abstract:
A surface mount component adapter, assembly and related method for attaching a surface mount component to a printed circuit board. The surface mount component adapter includes a substrate, a surface mount component holder on the substrate, and flexible leads each having a base end attached to the surface mount component holder and a free end configured to engage a plated through hole on a circuit board. The surface mount component holder is configured to engage electrical contacts of a surface mount component. The surface mount component assembly combines the surface mount adapter with the surface mount component. In the surface mount component method, the surface mount assembly is formed and the free ends of the flexible leads are attached to a corresponding number of the plated through holes on the circuit board.
Abstract:
A method for solderless electrical press-fit contacting of electrically conductive press-fit pins in circuit boards include: providing a circuit board having a thickness, at least one electrical conductor path, and a contacting opening guided perpendicularly through the circuit board and having a metallized inner wall; providing an electrically conductive press-fit pin having a longitudinal axis and having a press-fit region suitable for press-fitting into the contacting opening and having a substantially round cross section; and press-fitting the press-fit pin into the contacting opening by applying onto the press-fit pin a force acting along the longitudinal axis of the press-fit pin, press-fitting being assisted by the application of ultrasound acting on the press-fit pin.
Abstract:
A lighting device comprises: a first substrate comprising a first connector and a first connection terminal, the first connector being connected to an external power supply or driving device, the first connection terminal being electrically connected to the first connector; and a second substrate connected electrically to the first connection terminal and comprising a light emitting device.
Abstract:
A circuit board including a board substrate having opposite first and second sides. The board substrate has a thickness measured along a z-axis that is perpendicular to the first and second sides. The circuit board also includes plated thru-hole (PTH) vias extending along the z-axis from the first side into the board substrate. The PTH vias are arranged to form multiple signal pairs. The circuit board also includes signal traces that are directly coupled to the PTH vias and extend perpendicular to the z-axis in the board substrate. The signal traces and the PTH vias are configured to transmit differential signals. The circuit board also includes ground columns that extend along the z-axis in the board substrate. The ground columns are distributed relative to the signal pairs to form shield arrays. Each of the shield arrays surrounds one of the signal pairs, wherein the ground columns comprise microvias.
Abstract:
A circuit board system including mechanical protection of electrical components includes a circuit board (101) furnished with electrical components (103-111) and a protection element (102) attached to areas of the circuit board which are free from the electrical components. The protection element has thickness in the direction perpendicular to the circuit board and it is shaped to leave the electrical components unscreened in the direction perpendicular to the circuit board. Thus, the protection element constitutes barriers protecting the electrical components but still allows the electrical components to be accessed from the direction perpendicular to the circuit board for example in a flying probe testing. The body of the protection element can be made of same material as the electrically insulating body of the circuit board. Thus, the thermal expansion co-efficient of the protection element can be substantially the same as that of the circuit board.
Abstract:
A power semiconductor device includes a conductive insertion member as an external terminal projecting from a surface of the power semiconductor device facing a printed wiring board. The printed wiring board includes a conductive fitting member mounted on a pad part of the printed wiring board. The fitting member receives the insertion member therein when the power semiconductor device is connected to the printed wiring board. The insertion member has a recessed portion formed on a side surface of the insertion member. The fitting member has a projecting portion with elasticity formed on an inner side surface of the fitting member. The elasticity causes the projecting portion of the fitting member to contact the recessed portion of the insertion member under pressure when the insertion member is inserted into the fitting member.
Abstract:
The invention relates to a connecting element for the electric connection of a solenoid valve to a circuit board, having a first electric contact element for electrically contacting the solenoid valve, a second electric contact element for electrically contacting the circuit board, and at least one tolerance adjusting element, and a related fluid assembly. According to the invention the connecting element is configured as one piece, and the first electric contact element and the second electric contact element are connected to each other via the at least one tolerance adjusting element. A first modifiable tolerance adjusting element enables a length adjustment in at least one spatial direction in order to predetermine a desired spatial positioning of the first contact element and the second contact element relative to each other.