Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
One embodiment provides a tungsten wire containing 1 to 10% by mass of rhenium, the wire having a point indicating a 2% elongation within a quadrangle formed by joining points with straight lines, where the values of x and y are point (20, 75), point (20, 87), point (90, 75), and point (90, 58), in this order; wherein the wire diameter of the tungsten wire is represented by x μm, and the elongation of the tungsten wire is 2% after electrically heating with an electrical current which is a ratio of y % to the fusion current (FC) at the wire diameter x μm, and wherein a semi-logarithmic system of coordinates is expressed by a horizontal axis using a logarithmic scale of the wire diameter x and a vertical axis using a normal scale of ratio y to the fusion current.
Abstract:
Aspects include a method for treating a polycrystalline material, the method comprising: exposing a surface of the polycrystalline material to a plasma thereby changing the surface of the polycrystalline material from being characterized by a starting condition to being characterized by a treated condition; wherein: the surface comprises a plurality of crystallites each having the composition MB6, M being a metal element; the plasma comprises ions, the ions being characterized by an average ion flux selected from the range of 1.5 to 100 A/cm2 and an average ion energy that is less than a sputtering threshold energy; the starting condition of the surface is characterized by a first average work function and the treated condition of the surface is characterized by a second average work function; and the second average work function is less than the first average work function.
Abstract:
A method for manufacturing an electron source includes steps of sandwiching a welding object in which a tip of an electron emission material and a tungsten filament overlap in direct contact between a pair of welding electrodes, and welding the tip and the tungsten filament by causing a current to flow while pressing forces are applied to the welding object by the pair of welding electrodes. A thickness of the welding object is within a range of 50 to 500 μm.
Abstract:
A method for manufacturing an electron source includes steps of sandwiching a welding object in which a tip of an electron emission material and a tungsten filament overlap in direct contact between a pair of welding electrodes, and welding the tip and the tungsten filament by causing a current to flow while pressing forces are applied to the welding object by the pair of welding electrodes. A thickness of the welding object is within a range of 50 to 500 μm.
Abstract:
Disclosed embodiments include cathodes with conformal cathode surfaces, vacuum electronic devices with cathodes with conformal cathode surfaces, and methods of manufacturing the same. In a non-limiting embodiment, a cathode for a vacuum electronic device includes: a substrate having a predetermined shape; and electron emissive material disposed on at least one portion of at least one surface of the substrate, a shape of the electron emissive material conforming to the predetermined shape of the substrate.
Abstract:
A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO-CaO-Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
Abstract translation:具有与金属基体接触的钪和钡化合物的难熔金属基体的热离子分配器阴极及其形成方法。 本发明利用原子层沉积(ALD)在钨表面上形成钪化合物的纳米尺度均匀的共形分布,并进一步利用原位高压固结/浸渍以增强BaO-CaO-Al 2 O 3基发射混合物的浸渍 钪酸盐涂层的钨基体或烧结钨/钪酸盐/钡复合结构。 结果是具有改善的发射的钨 - 钪酸盐热阴极。