Abstract:
Media-exposed interconnects for transducer modules are disclosed. The transducers may be sensing transducers, actuating transducers, IC-only transducers, or combinations thereof, or other suitable transducers. The transducers may be used in connection with implantable medical devices and may be exposed to various media, such as body fluids. The media-exposed interconnects for transducer modules may allow transducers to communicate electrically with other components, such as implantable medical devices.
Abstract:
A microelectronic component arrangement includes a sensor and a carrier. The sensor has a detection surface and a region including contact elements situated at a first distance with respect to one another. The carrier includes a mounting surface, and the sensor is fixed on the carrier by the contact elements situated at a first distance with respect to one another at least regionally. The detection surface is opposite the mounting surface in a manner having a second distance with respect to the mounting surface. The contact elements are wetted by a mechanically stabilizing material, the region including the contact elements is enclosed by the mechanically stabilizing material, and the detection surface is free of the mechanically stabilizing material.
Abstract:
A microelectronic device contains a high performance silicon nitride layer which is stoichiometric within 2 atomic percent, has a low stress of 600 MPa to 1000 MPa, and has a low hydrogen content, less than 5 atomic percent, formed by an LPCVD process. The LPCVD process uses ammonia and dichlorosilane gases in a ratio of 4 to 6, at a pressure of 150 millitorr to 250 millitorr, and at a temperature of 800° C. to 820° C.
Abstract:
In described examples, a MEMS device is formed by forming a sacrificial layer over a substrate and forming a first metal layer over the sacrificial layer. Subsequently, the first metal layer is exposed to an oxidizing ambient which oxidizes a surface layer of the first metal layer where exposed to the oxidizing ambient, to form a native oxide layer of the first metal layer. A second metal layer is subsequently formed over the native oxide layer of the first metal layer. The sacrificial layer is subsequently removed, forming a released metal structure.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
The present invention refers to a flat back plate, e.g. for MEMS capacitors e.g. for MEMS microphones. For that the back plate comprises a tensile element that exerts a horizontal tensile stress on its environment.
Abstract:
According to one embodiment, an electrical component comprises a substrate, a functional element formed on the substrate, a first layer which includes through holes, and forms a cavity that stores the functional element on the substrate, and a second layer which is formed on the first layer, and closes the through holes. The first layer includes a first film, a second film on the first film, and a third film on the second film. A Young's modulus of the second film is higher than a Young's modulus of the first film and the third film.
Abstract:
A method for fabricating a microelectromechanical system (MEMS) device of the present invention includes the following steps: providing a substrate, comprising a circuit region and a MEMS region separated from each other; forming an interconnection structure on the substrate in the circuit region, and simultaneously forming a plurality of dielectric layers and a first electrode on the substrate in the MEMS region, wherein the first electrode comprises at least two metal layers formed in the dielectric layers and a protection ring formed in the dielectric layers and connecting two adjacent metal layers, so as to define an enclosed space between the two adjacent metal layers; forming a second electrode on the first electrode; and removing the dielectric layers outside the enclosed space in the MEMS region to form a cavity between the electrodes.