Abstract:
The optical wavelength standard comprises a diffraction grating having a diffractive surface, an input arrangement and an output optical arrangement. The input optical arrangement is located to illuminate the diffractive surface of the diffraction grating with incident light at an angle of incidence at which absorption of the incident light at a resonance wavelength generates surface plasmons. The output optical arrangement is located to receive the incident light specularly reflected from the diffractive surface of the diffraction grating as reflected light. The reflected light includes an absorption line at the resonance wavelength. The absorption line provides the wavelength reference. The resonance wavelength is defined by the angle of incidence and the physical characteristics of the diffraction grating. A desired resonance wavelength can be obtained by appropriately defining the angle of incidence and the physical characteristics of the diffraction grating. Moreover, the resonance wavelength can be changed by changing either or both of the angle of incidence and the diffraction grating.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
The invention relates to a device for measuring light-activated fluorescence of at least one coating that contains a fluorescent material, and its use for measuring fluid materials which cause fluorescence-quenching in at least one of the fluorescent coatings. To activate the fluorescence, at least one first light wave-guide is directed onto at least one coating applied to a support and the fluorescent light is directed at a detector by means of at least one-second light wave-guide, in order to determine the intensity of the fluorescent light. The end faces of the different fluorescent light wave guides are then arranged to have overlapping entry and/or exit cones and/or be of a shape substantially identical to the at least one coating containing a fluorescent material, in such a way that an accurate measurement of the fluorescence intensity can be attained, and that the light source(s), light wave guides and the detector(s) are lodged in a measuring head.
Abstract:
Optical coherence tomography with 3D coherence scanning is disclosed, using at least three fibers (201, 202, 203) for object illumination and collection of backscattered light. Fiber tips (1, 2, 3) are located in a fiber tip plane (71) normal to the optical axis (72). Light beams emerging from the fibers overlap at an object (122) plane, a subset of intersections of the beams with the plane defining field of view (266) of the optical coherence tomography apparatus. Interference of light emitted and collected by the fibers creates a 3D fringe pattern. The 3D fringe pattern is scanned dynamically over the object by phase shift delays (102, 104) controlled remotely, near ends of the fibers opposite the tips of the fibers, and combined with light modulation. The dynamic fringe pattern is backscattered by the object, transmitted to a light processing system (108) such as a photo detector, and produces an AC signal on the output of the light processing system (108). Phase demodulation of the AC signal at selected frequencies and signal processing produce a measurement of a 3D profile of the object.
Abstract:
The device for measuring an optical absorption characteristic of a sample according to the present invention comprising a light source, a optical wave-guide having light input surface(s) and light output surface(s) that are opposite to each other, and a light reflecting surface on which a sample to be measured is disposed, through which the light passes and is reflected by a total reflection on the sample, one or more light transmitting means arranged between the light output surface of the optical wave-guide and the light input surface of the optical wave-guide so that the light is again entered into the optical wave-guide, and a processing device which receives the light re-exited from the optical wave-guide through the output surface and detects the optical absorption characteristics of the sample on the basis of the light received, whereby the light which passes through the optical wave-guide is conducted to the optical wave-guide again, the light is again entered the optical wave-guide, and the light is again reflected on the sample (FIG. 1).
Abstract:
A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.
Abstract:
Crime scene lighting devices are used in forensic criminology for illumination and investigation at crime scenes using fluorescence excitation. High radiation powers are required both for white light in the so-called general search and for the criminologically relevant UVA-blue-green range. Moreover, it should be possible for the crime scene investigator to use the forensic lighting device portably and independent from the public power supply. The present disclosure relates to a suitable crime scene light device with a mercury ultra high pressure lamp as the light source, a light guide and terminals for operating the lamp selectively with an accumulator or the public power supply system. A suitable carrier bag, a so-called lorgnette with various longpass filters and a cross-section converter for visualizing shoeprints form useful accessories of the forensic lighting device.
Abstract:
The present invention provides an apparatus for solution component analysis and fabricating method thereof, by which a mixing channel, reaction channel, and measurement channel are formed as continuous micro-grooves on one substrate to implement the miniature apparatus for analyzing solution components, by which the apparatus is provided with portability facilitating access to a spot outside a laboratory to perform an instant sample analysis, and by which an optical system configuration for sample analysis can be simplified in a manner of facilitating an optical transfer by forming a transparent silicon oxide (SiO2) layer between a micro channel of the apparatus and an optical fiber to insert the optical fiber therein.
Abstract:
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO2 gas. The temporal response of the absorption spectrum at various NO2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO2 gas at levels of parts per billion.
Abstract:
The present invention provides for an interface mechanism in a bio-separation instrument that makes interface connections to a multi-channel cartridge. The interface mechanism precisely positions the cartridge in relation to the support elements in the instrument (e.g., high-voltage, gas pressure, incident radiation and detector), and makes automated, reliable and secured alignments and connections between various components in the cartridge and the support elements in the supporting instrument. The interface mechanism comprises pneumatically or electromechanically driven actuators for engaging support elements in the instrument to components on the cartridge. After the cartridge has been securely received by the interface mechanism, the connection sequence is initiated. The interface provides separate high voltage and optical connections for each separation channel in the cartridge, thus providing channel-to-channel isolation from cross talk both electrically and optically.