Abstract:
A fanout line structure of an array substrate includes a plurality of fanout lines arranged on a fanout area of the array substrate, where the fanout line is used to connect a signal line with a bonding pad. Lengths of different fanout lines are different. At least one fanout line includes a first subsection and a second subsection. An electrical resistivity of material of the second subsection of the fanout line is greater than an electrical resistivity of material of the first subsection of the fanout line. Length of a first fanout line is greater than length of a second fanout line, and length of a second subsection of the second fanout line is greater than length of a second subsection of the first fanout line.
Abstract:
Embodiments of the present invention provide a component-built-in wiring board capable of preventing a defect, such as a crack, resulting from stress concentration at a corner, when a component is accommodated in a housing portion of a core material with resin filler filled therebetween. The component-built-in wiring board can include a component accommodated in the housing portion of a core material, and a laminate portion in which insulating layers and conductor layers are laminated alternately on the core material. A gap between the housing portion of the core material and the component can be filled with a resin filler. In an inner circumferential portion of the housing portion of the core material a first straight chamfered portion is formed at each corner of a rectangle, and in an outer circumferential portion of the component a second straight chamfered portion is formed at each corner of a rectangle.
Abstract:
An engagement structure for preventing the separation of a resin layer is formed in a contact surface of an insulating substrate in a connecting component, the contact surface being in contact with the resin layer. The resin layer engages with the engagement structure in the contact surface in the insulating substrate in contact with the resin layer, the contact surface forming the side surface of the connecting component.
Abstract:
A wiring board with a built-in electronic component includes a substrate having an opening portion and having a first surface and a second surface on the opposite side of the first surface, and an electronic component having a third surface and a fourth surface on the opposite side of the third surface and positioned in the opening portion of the substrate such that the third surface faces the same direction as the first surface of the substrate. The electronic component has a curved surface joining the fourth surface and a side surface of the electronic component, and the opening portion of the substrate has a tapered portion formed by a tapered surface of the substrate joining an inner wall of the opening portion and the first surface and tapering from the first surface toward the second surface.
Abstract:
The system includes a first printed circuit board including a first transmission line, the first circuit board may be attached to a chassis and a second printed circuit board including a second transmission line, the second circuit board may be attached to the chassis and/or the first printed circuit board and the second transmission line configured to electrically couple power from the first transmission line.
Abstract:
A multi-piece board includes a frame and multiple wiring boards connected to the frame. The frame and each of the wiring boards are positioned with a clearance. The frame and/or each of the wiring boards has an end portion having a first notch portion on a surface side adjacent to the clearance. The end portion of the frame and/or each of the wiring boards has a second notch portion formed on the opposite surface side with respect to the surface side of the first notched portion adjacent to the clearance. The clearance between the frame and each of the wiring boards is filled with an adhesive agent.
Abstract:
A multi-piece-array formed by laminating a plurality of ceramic layers includes: a product region where a plurality of wiring board portions having a rectangular shape in plan view and including cavities are arranged in matrix; a redundant portion that is positioned along a periphery of the product region; and dividing grooves that are formed on a front surface and/or a back surface along a boundary between the wiring board portions and a boundary between the wiring board portion and the redundant portion. A deepest portion of the dividing groove has an arc shape and the dividing groove includes a middle portion, and a width of the deepest portion is greater than a width of the groove inlet and a width of the middle portion is equal to or less than the width of the groove inlet.
Abstract:
A method for producing a joined structure, containing: after placing an anisotropic conductive film in the predetermined manner, placing a wiring member containing a wiring plate formed thereon, where the wiring plate has a resist region in which the wiring plate is covered with a resist layer, and a second electrode region in which the wiring plate is not covered with the resist layer, so that the edge of the resist region at a boundary with the second electrode region comes above the chamfer part of the substrate; and heating and compressing the anisotropic conductive film from the side of the wiring member to melt and make the anisotropic conductive film flow into the side of the resist region to thereby cover the second electrode region with the anisotropic conductive film, so as to electrically connect the first electrode region and the second electrode region.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
Disclosed are tapered dielectric and conductor structures which provide controlled impedance interconnection while signal conductor lines transition from finer pitches to coarser pitches thereby obviating electrical discontinuities generally associated with changes of circuit contact pitch. Also disclosed are methods for the construction of the devices and applications therefore.