Abstract:
There is described a system and method for the in vivo determination of lactate levels in blood using Near-Infrared Spectroscopy (NIRS) and/or Near-infrared Raman Spectroscopy (NIR-RAMAN). The method teaches measuring lactate in vivo comprising: optically coupling a body part with a light source and a light detector the body part having tissues comprising blood vessels; injecting near-infrared (NIR) light at one or a plurality of wavelengths in the body part; detecting, as a function of blood volume variations in the body part, light exiting the body part at at least the plurality of wavelengths to generate an optical signal; and processing the optical signal as a function of the blood volume variations to obtain a lactate level in blood.
Abstract:
The present invention provides a method and apparatus for estimating a property of a fluid downhole by exposing the fluid to modulated light downhole and sensing changes in intensity of infrared radiation from the downhole fluid to estimate the property of the downhole fluid. The present invention senses changes in intensity of light by converting the changes to transient changes in temperature of a detector, such as a pyroelectric detector. The present invention performs spectroscopic analysis of fluids by optically filtering the light allowed to impinge on a pyroelectric detector, converting the changes in temperature of the pyroelectric detector to a signal and converting the signal to estimate the property of the downhole fluid. The light source is modulated by mechanically chopping the beam or by electrically pulsing the light source or by steering the beam between different path lengths of sample or between a reference cell (filled with a reference fluid or empty) and a sample-filled cell.
Abstract:
A method for generating a net analyte signal calibration model for use in detecting and/or quantifying the amount of an analyte in a test subject. The net analyte signal can be generated by providing a set of in vivo infrared spectra for a test subject during a period in which an analyte concentration is essentially constant; calculating an optimal subspace of spectra that at least substantially describes all non-analyte dependent spectral variance in the in vivo spectra; providing a pure component infrared spectrum for the analyte; and calculating a net analyte signal spectrum from a data set comprising the optimal subspace spectra and the pure analyte spectrum. The net analyte signal calibration model can be used, for example, in measuring the concentration of analyte in a test subject, and/or for evaluating the analytical significance of an in vivo multivariate calibration model.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator.
Abstract:
A system for analyzing a mixture of chemical components. First, a liquid or gas chromatograph produces samples of the mixture. The samples include overlapping components. A spectrometer measures wavelength of each sample. A memory stores the measured wavelengths of each sample as rows in a first matrix. Independent component analysis is applied to the first matrix to obtain a second matrix and a third matrix. Columns of the first matrix are elution profiles of distinct component groups, and rows of the third matrix are corresponding spectra of the distinct component groups.
Abstract:
A method of sorting sorting objects within a bulk of objects from a heterogeneous population is provided. The bulk of objects to be sorted has an inherent variation, and at least one class, having less variation than the originally inherent variation of the bulk, is separated from the bulk. This lesser variation represents a quality of composition with reference to any organic material of the objects within the bulk. The method comprises the steps of distributing each of the objects to be separated as a separate object in a sorting device; exposing the separate object to energy emittedfrom at least one energy source; recording from at least one point of the separateobject by meansof at least one sensor a first multivariate signal; predicting orclassifying, by means of a calibration method previously performed on a subset of the population, between the first multivariate signal and the quality of composition, a second signal expressing the magnitude of at least one quality variable of univariate variation; and separating the separate object from the sorting device to the at least one collected class in dependence on the magnitude of the at least one quality variable of the second signal from the at least one point.
Abstract:
A fourth embodiment of the present invention is a method of generating a temperature compensated absorbance spectrum. The method includes the steps of: a. providing a sample spectrum and an estimated temperature of a backdrop object; b. from a set of known temperature spectra related to a known background temperature, selecting at least two known temperature spectra representing a background temperature above and below the estimated temperature; c. comparing the sample spectrum to the known temperature spectra in order to determine a sample background spectrum; and d. calculating an absorbance spectrum from the sample spectrum and the background spectrum.
Abstract:
This disclosure is of 1) the utilization of the spectrum from 250 nm to 1150 nm for measurement or prediction of one or more parameters, e.g., brix, firmness, acidity, density, pH, color and external and internal defects and disorders including, for example, surface and subsurface bruises, scarring, sun scald, punctures, in N—H, C—H and O—H samples including fruit; 2) an apparatus and method of detecting emitted light from samples exposed to the above spectrum in at least one spectrum range and, in the preferred embodiment, in at least two spectrum ranges of 250 to 499 nm and 500 nm to 1150 nm; 3) the use of the chlorophyl band, peaking at 680 nm, in combination with the spectrum from 700 nm and above to predict one or more of the above parameters; 4) the use of the visible pigment region, including xanthophyll, from approximately 250 nm to 499 nm and anthocyanin from approximately 500 to 550 nm, in combination with the chlorophyl band and the spectrum from 700 nm and above to predict the all of the above parameters.
Abstract:
The present invention relates to a method for analyzing mixtures of components by a process selected from the group consisting of flow based separation processes and flow analysis processes. The method comprising the steps of: obtaining measurement signals by measuring process conditions at a plurality of positions throughout the system; applying signal processing to the measurement signals, said signal processing comprising multivariate data analysis for condensing the plurality of measurement signals to a smaller number of main signals being non-correlated; logging said main signals; and displaying said main signals versus time, where changes of said system conditions are indicated by one or more of the displayed main signals; detecting any error occurrence during an on going process, and determining what part of said system cause said error.
Abstract:
This disclosure is of 1) the utilization of the spectrum from 250 nm to 1150 nm for measurement or prediction of one or more parameters, e.g., brix, firmness, acidity, density, pH, color and external and internal defects and disorders including, for example, surface and subsurface bruises, scarring, sun scald, punctures, in NnullH, CnullH and OnullH samples including fruit; 2) an apparatus and method of detecting emitted light from samples exposed to the above spectrum in at least one spectrum range and, in the preferred embodiment, in at least two spectrum ranges of 250 to 499 nm and 500 nm to 1150 nm; 3) the use of the chlorophyl band, peaking at 680 nm, in combination with the spectrum from 700 nm and above to predict one or more of the above parameters; 4) the use of the visible pigment region, including xanthophyll, from approximately 250 nm to 499 nm and anthocyanin from approximately 500 to 550 nm, in combination with the chlorophyl band and the spectrum from 700 nm and above to predict the all of the above parameters.