Abstract:
A Raman spectrometer comprising means for illuminating a sample with a shaped laser beam and a detector that is operable to detect light that is reflected from or transmitted through a sample. Preferably, the shaped laser beam has a dark spot at its center.
Abstract:
Systems and methods are provided for evaluating and sorting seeds based on characteristics of the seeds. One system includes an imaging and analysis subsystem that collects image data from the seeds and analyzes the collected image data for characteristics of the seeds. This subsystem can include an imaging theater having minors that reflect image data from the seeds to an imaging device for collection. The system can also include an off-loading and sorting subsystem configured to sort the seeds based on their characteristics. And, one method includes illuminating the seeds and collecting image data from the seeds for determining their characteristics. The image data can be collected from at least three portions of the seeds at each of a plurality of sequentially changing spectral wavelengths. In addition (or alternatively), the image data can be collected from top and bottom portions of the seeds using a single imaging device.
Abstract:
The invention relates to a plurality of light sources to power a variety of applications including microarray readers, microplate scanners, microfluidic analyzers, sensors, sequencers, Q-PCR and a host of other bioanalytical tools that drive today's commercial, academic and clinical biotech labs.
Abstract:
Systems and methods are provided for spectrophometric measurement of a physiological property of a patient. For example, an embodiment of a patient monitoring system may include a monitor operatively coupled to a spectrophotometric sensor, which may include an emitter configured to transmit light into tissue of the patient and a detector configured to receive the light from the tissue. The emitter may use a photonic crystal light emitting diode to generate the light.
Abstract:
An illumination device (20) for a microscope (40) has a laser unit (24) that generates at least one broadband laser light pulse (30); light components (71, 72, 73, 74, 75, 76) of different wavelengths of said broadband laser light pulse (30) being offset in time from one another. A compensation unit (36) disposed in the path of the broadband laser light pulse (30) temporally offsets the light components (71, 72, 73, 74, 75, 76) of the broadband laser light pulse (30) in such a way that they exit the compensation unit (36) simultaneously or nearly simultaneously.
Abstract:
A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
Abstract:
Multimodal optical spectroscopy systems and methods produce a spectroscopic event to obtain spectroscopic response data from biological tissue and compare the response data with an empirical equation configured to correlate the measured response data and the most probable attributes of the tissue, thus facilitating classification of the tissue based on those attributes for subsequent biopsy or remedial measures as necessary.
Abstract:
A variable wavelength interference filter includes a fixed substrate having a fixed reflecting film, a movable substrate having a movable reflecting film, and an electrostatic actuator including a fixed electrode and a movable electrode. The fixed electrode includes first and second fixed partial electrodes electrically isolated from each other. First and second extraction electrodes extending from the first and second fixed partial electrodes, respectively, are formed on the fixed substrate. The movable electrode is formed in a ring shape covering first and second facing regions facing the first and second fixed partial electrodes, respectively.
Abstract:
Embodiments of the present disclosure include an optical probe capable of communicating identification information to a patient monitor in addition to signals indicative of intensities of light after attenuation by body tissue. The identification information may indicate operating wavelengths of light sources, indicate a type of probe, such as, for example, that the probe is an adult probe, a pediatric probe, a neonatal probe, a disposable probe, a reusable probe, or the like. The information could also be utilized for security purposes, such as, for example, to ensure that the probe is configured properly for the oximeter, to indicate that the probe is from an authorized supplier, or the like.