Abstract:
A memory card with electrostatic discharge (ESD) protection is provided. The memory card includes a board, a set of contacts, at least one chip and an ESD protection path. The board having a signal path not electrically connected to the edge of the board. The ESD protection path for transmitting ESD current is disposed on the board. Furthermore, a part of the ESD protection path extends to the edge of the board.
Abstract:
A bypass capacitor is arranged at an end of a main surface of a circuit board. More specifically, the bypass capacitor is arranged at the end of the main surface of the circuit board such that conductor pattern is located closer to the end of the circuit board than earth pattern. In this position, an earth pattern and a through hole electrode do not surround an outer side of a power supply line. Arrangement of the bypass capacitor in this position can particularly suppress radiation noises that may emerge from a resonance end surface of the board. Therefore, it is possible to provide a circuit unit, a power supply bias circuit, an LNB and a transmitter capable of suppressing oscillation at a certain frequency that cannot be sufficiently suppressed by a conventional bypass capacitor.
Abstract:
In a printed circuit board of the invention, a first signal wiring layer, a first ground layer, a second ground layer and a second signal wiring layer are laminated via an insulating material. A first signal wiring is formed on the first signal wiring layer and a second signal wiring is formed on the second signal wiring layer. The two signal wirings are connected via a first through hole. The conductive first ground layer and the conductive second ground layer are connected via a second through hole. The second through hole is insulated from the first through hole and formed so as to surround the first through hole.
Abstract:
A multilayer interconnection board (10) comprises a dielectric substrate (11), a through-hole (15), a signal line (12) having a large width section (12A) and a small width section (12B) connected with the through-hole (15), and a ground layer (13, 14). A length L (mm) of the small width section (12B) meets the formula of 0
Abstract:
In some embodiments a memory module circuit board includes a first layer with a first surface adapted to couple a first plurality of memory devices to the circuit board, and a second layer with a first portion and a second portion, the first portion including a plurality of first signal paths coupled to the first plurality of memory devices and the second portion including a reference voltage plane. Other embodiments are described and claimed.
Abstract:
A center-tap termination circuit which includes two resistors having the same resistance, which are serially connected between forward and return transmission lines, where the forward and return transmission lines constitute a differential signal transmission line. A capacitor is connected between a connector that interconnects the two resistors and a GND of 6 a printed circuit board. The forward and return transmission lines are substantially equidistant from each other along their lengths. The resistors and the capacitor are arranged outside the forward and return transmission lines. The connector is provided intersecting, in three-dimensional space, the forward and return transmission lines, such as being formed by a jumper bridging the two lines, or by being formed on a different layer of a multilayer printed circuit board. Variations in the differential impedance are suppressed, and the transmission return/transmission forward characteristics of differential signals are substantially matched. The differential impedance matching is achieved, and high-quality signal waveforms are maintained. Not only noise emitted due to differential mode current components, but also noise emitted due to common mode current components are suppressed.
Abstract:
A wiring board includes an insulating board defined by a first surface and a second surface opposing to the first surface; first signal strips disposed on the first surface; a first power distribution plane provided on the first surface so as to occupy a residual area of the first signal strips; lands disposed on the second surface; via metals penetrating the insulating board so as to connect the lands to the corresponding first signal strips; a second power distribution plane provided on the second surface.
Abstract:
A hybrid assembly having improved cross talk characteristics includes a substrate having an upper surface. Conductive paths on the upper surface are provided for conducting high frequency signals. Regular polygons made of an electromagnetic band gap (EBG) material having slow wave characteristics are deposited on the upper surface and form a lattice for tessellating the upper surface. Each of the polygons has a periphery. The polygons are separated along their periphery from adjacent polygons by an interspace and are covered with an insulating material. Second polygons, also made of an electromagnetic band gap material, are deposited over the insulating material. Semiconductor structures are mounted over the second polygons. The semiconductor structures have a plurality of electrical contacts with the conductive paths. The regular polygons can be hexagons, triangles, octagons or any other combination that forms a lattice and can be printed onto the substrate.
Abstract:
Disclosed is a multi-layered PCB of mobile communication terminals that may improve ESD protection of LCD through efficiently protecting LCD signal lines such as data lines and control lines from ESD. According to the present invention, the efficient arrangement of GND regions around the LCD signal lines improve ESD features of sub-LCD and main-LCD and reduce defects by ESD, so that reliability of mobile communication terminals may be improved and the mobile communication terminals may stably operate against unexpected situation. Accordingly, it is possible to improve quality of mobile communication terminals and to reduce manufacturing cost due to efficient PCB arrangement.
Abstract:
A multilayer PCB has first and second signal transmission lines and first and second ground layers. A signal via is connected between the first and second transmission lines. Ground vias extending parallel to the signal via are connected between the first and second ground layers. The end of the first ground layer protrudes with respect to the second ground layer and extends nearer to the signal via than the second ground layer. Thus, it is possible to stabilize the characteristic impedance of the first transmission line.