Abstract:
A packaging substrate, a packaged semiconductor device, a computing device and methods for forming the same are provided. In one embodiment, a packaging substrate is provided that includes a packaging structure having a chip mounting surface and a bottom surface. The packaging structure has at a plurality of conductive paths formed between the chip mounting surface and the bottom surface. The conductive paths are configured to provide electrical connection between an integrated circuit chip disposed on the chip mounting surface and the bottom surface of the packaging structure. The packaging structure has an opening formed in the chip mounting surface proximate a perimeter of the packaging structure. A stiffening microstructure is disposed in the opening and is coupled to the packaging structure.
Abstract:
A method and system for securing a flexible circuit to a mounting structure is disclosed. The system can include a surface-mount device, flexible circuit, stiffener, and bracket. The stiffener is used as an intermediate coupling device between the flexible circuit and bracket. The flexible circuit is coupled to the stiffener with a heat-activated adhesive. Next, the surface-mount device is mounted to the flexible circuit with surface-mounting techniques. A peripheral area of the stiffener is then welded to the bracket. The bracket in turn can be fastened to the enclosure of an electronic device.
Abstract:
A metal/ceramic bonding substrate includes: a ceramic substrate; a metal plate bonded directly to one side of the ceramic substrate; a metal base plate bonded directly to the other side of the ceramic substrate; and a reinforcing member having a higher strength than that of the metal base plate, the reinforcing member being arranged so as to extend from one of both end faces of the metal base plate to the other end face thereof without interrupting that the metal base plate extends between a bonded surface of the metal base plate to the ceramic substrate and the opposite surface thereof.
Abstract:
A printed circuit board and a method of manufacturing the same is provided. The printed circuit board includes an insulating substrate, a circuit disposed on the insulating substrate, a pair of first reinforcements spatially separated in the insulating substrate, the first reinforcements extending parallel to a surface of the insulating substrate, and a second reinforcement configured to connect the pair of first reinforcements.
Abstract:
A flexible circuit film includes a first flexible film, a second flexible film facing the first flexible film, a plurality of wirings arranged between the first flexible film and the second flexible film and extending in a first direction, then bending to extend in a second direction crossing the first direction, and then bending a second time to extend in an opposing direction to the first direction, and a guide film including a material more rigid than the first and second flexible films and arranged on an ends of the first flexible film. The guide film includes a tear-preventing portion overlapping with a bending portion of a shortest one of the wirings while covering portions of an inner edge near inner corners of a U-shaped flexible circuit film.
Abstract:
An integrated circuit package is presented. In an embodiment, the integrated circuit package has contact pads formed on the top side of a package substrate, a die electrically attached to the contact pads, and input/output (I/O) pads formed on the top side of the package substrate. The I/O pads are electrically connected to the contact pads. The integrated circuit package also includes a flex cable receptacle electrically connected to the I/O pads on the top side of the package substrate. The flex cable receptacle is non-compressively attachable to a flex cable connector and includes receptacle connection pins electrically connected to the I/O pads.
Abstract:
A stretchable circuit board includes a stretchable base, a stretchable wiring portion, a reinforcement base having in-plane rigidity higher than that of the stretchable base 10, and a draw-out wiring portion. The stretchable wiring portion having stretchability is formed on a main surface located on at least one side of the stretchable base. The draw-out wiring portion is formed at least on a main surface that is one side of the reinforcement base. The main surface of the reinforcement base is overlaid with a part of an area where the stretchable wiring portion is formed, in which the main surface faces the main surface of the stretchable base. A part of the stretchable wiring portion and a part of the draw-out wiring portion are joined together, and they are electrically continuous.
Abstract:
A printed circuit board and a method of manufacturing the same is provided. The printed circuit board includes an insulating substrate, a circuit disposed on the insulating substrate, a pair of first reinforcements spatially separated in the insulating substrate, the first reinforcements extending parallel to a surface of the insulating substrate, and a second reinforcement configured to connect the pair of first reinforcements.
Abstract:
A foldable display apparatus for minimizing stress applied to a bending area of a display panel. The foldable display apparatus can include a display panel configured to include a display area which includes a first display area, a second display area, and a bending area which is defined between the first and second display areas, a housing configured to include a first housing member, which supports a first area of the display panel corresponding to the first display area, and a second housing member which supports a second area of the display panel corresponding to the second display area, and a hinge part connected between the first and second housing members, and configured to enable the display panel to be folded or unfolded with respect to the bending area.
Abstract:
A printed circuit board includes an inner layer having a supporting pattern and via pad patterns that are disposed to be spaced apart from each other in a lateral direction, an outer layer disposed over or below the inner layer and including a circuit pattern, a via plug connecting the circuit pattern layer to any one of the via pad patterns. The supporting pattern is stiffer than the via pad patterns, and at least two of the via pad patterns are electrically connected to each other by a via pad connecting pattern located at substantially the same level as the via pad patterns.