Microelectronic mechanical system and methods
    231.
    发明申请
    Microelectronic mechanical system and methods 有权
    微电子机械系统及方法

    公开(公告)号:US20030138986A1

    公开(公告)日:2003-07-24

    申请号:US10268257

    申请日:2002-10-09

    Inventor: Mike Bruner

    Abstract: The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. The multi-layer structure has a capping layer, that preferably comprises silicon oxide and/or silicon nitride, and which is formed over an etch resistant substrate. A patterned device layer, preferably comprising silicon nitride, is embedded in a sacrificial material, preferably comprising polysilicon, and is disposed between the etch resistant substrate and the capping layer. Access trenches or holes are formed in to capping layer and the sacrificial material are selectively etched through the access trenches, such that portions of the device layer are release from sacrificial material. The etchant preferably comprises a noble gas fluoride NGF2x (wherein NgnullXe, Kr or Ar: and where xnull1, 2 or 3). After etching that sacrificial material, the access trenches are sealed to encapsulate released portions the device layer between the etch resistant substrate and the capping layer. The current invention is particularly useful for fabricating MEMS devices, multiple cavity devices and devices with multiple release features.

    Abstract translation: 本发明提供了包封的释放结构,其中间体及其制备方法。 多层结构具有覆盖层,其优选地包括氧化硅和/或氮化硅,并且其形成在耐蚀刻衬底上。 优选地包括氮化硅的图案化器件层嵌入牺牲材料中,优选地包括多晶硅,并且设置在耐蚀刻衬底和覆盖层之间。 进入沟槽或孔形成在覆盖层中,并且牺牲材料通过进入沟槽被选择性地蚀刻,使得器件层的部分从牺牲材料释放。 蚀刻剂优选包含惰性气体氟化物NGF2x(其中Ng = Xe,Kr或Ar:其中x = 1,2或3)。 在蚀刻该牺牲材料之后,进入沟槽被密封以将器件层的释放部分封装在耐蚀刻衬底和覆盖层之间。 本发明对于制造具有多个释放特征的MEMS器件,多腔器件和器件特别有用。

    Method of making a micromechanical device from a single crystal semiconductor substrate and monolithic sensor formed thereby
    232.
    发明授权
    Method of making a micromechanical device from a single crystal semiconductor substrate and monolithic sensor formed thereby 失效
    从单晶半导体基板和由此形成的单片传感器制造微机械装置的方法

    公开(公告)号:US06429458B1

    公开(公告)日:2002-08-06

    申请号:US09628905

    申请日:2000-07-31

    Abstract: A monolithic sensor including a doped mechanical structure is movably supported by but electrically isolated from a single crystal semiconductor substrate of the sensor through a relatively simple process. The sensor is preferably made from a single crystal silicon substrate using front-side release etch-diffusion. Thick single crystal Si micromechanical devices are combined with a conventional bipolar complimentary metal oxide semiconductor (BiCMOS) integrated circuit process. This merged process allows the integration of Si mechanical resonators as thick as 15 &mgr;m thick or more with any conventional integrated circuit process with the addition of only a single masking step. The process does not require the use of Si on insulator wafers or any type of wafer bonding. The Si resonators are etched in an inductively coupled plasma source which allows deep trenches to be fabricated with high aspect ratios and smooth sidewall surfaces. Clamped-clamped beam Si resonators 500 &mgr;m long, 5 &mgr;m wide, and 11 &mgr;m thick are disclosed. A typical resonator had a resonance frequency of 28.9 kHz and an amplitude of vibration at resonance of 4.6 &mgr;m in air. Working NMOS transistors are fabricated on the same chip as the resonator with measured threshold voltages of 0.6 V and an output conductance of 2.0×10−5&OHgr;−1 for a gage voltage of 4 V.

    Abstract translation: 包括掺杂机械结构的单片传感器通过相对简单的过程可移动地支撑,但是与传感器的单晶半导体衬底电隔离。 该传感器优选由使用前侧释放蚀刻扩散的单晶硅衬底制成。 厚单晶Si微机械器件与传统的双极互补金属氧化物半导体(BiCMOS)集成电路工艺相结合。 这种合并过程允许将Si机械谐振器与任何传统的集成电路过程一体化,厚度为15μm或更大,仅添加单个掩蔽步骤。 该方法不需要使用绝缘体上硅晶片或任何类型的晶片接合。 Si谐振器在电感耦合等离子体源中蚀刻,其允许以高纵横比和平滑的侧壁表面制造深沟槽。 公开了500毫米长,5微米宽和11微米厚的夹紧夹紧光束Si谐振器。 典型的谐振器的共振频率为28.9kHz,共振振幅在空气中为4.6mum。 工作的NMOS晶体管制造在与谐振器相同的芯片上,测量的阈值电压为0.6 V,输出电导率为2.0x10-5OMEGA-1,表示电压为4 V.

    Method for making micromechanical structures having at least one lateral, small gap therebetween and micromechanical device produced thereby
    233.
    发明申请
    Method for making micromechanical structures having at least one lateral, small gap therebetween and micromechanical device produced thereby 审中-公开
    用于制造具有至少一个横向的小间隙的微机械结构的方法和由此产生的微机械装置

    公开(公告)号:US20020070816A1

    公开(公告)日:2002-06-13

    申请号:US09938411

    申请日:2001-08-23

    Abstract: A method and resulting formed device are disclosed wherein the method combines polysilicon surface-micromachining with metal electroplating technology to achieve a capacitively-driven, lateral micromechanical resonator with submicron electrode-to-resonator capacitor gaps. Briefly, surface-micromachining is used to achieve the structural material for a resonator, while conformal metal-plating is used to implement capacitive transducer electrodes. This technology makes possible a variety of new resonator configurations, including disk resonators and lateral clamped-clamped and free-free flexural resonators, all with significant frequency and Q advantages over vertical resonators. In addition, this technology introduces metal electrodes, which greatly reduces the series resistance in electrode interconnects, thus, minimizing Q-loading effects while increasing the power handling ability of micromechanical resonators.

    Abstract translation: 公开了一种方法和产生的形成的器件,其中该方法将多晶硅表面微机械加工与金属电镀技术相结合,以实现具有亚微米电极到谐振器的电容器间隙的电容驱动的横向微机械谐振器。 简而言之,使用表面微加工来实现谐振器的结构材料,而使用保形金属镀来实现电容式换能器电极。 该技术使得各种新的谐振器配置成为可能,包括磁盘谐振器和横向夹紧和自由弯曲谐振器,与垂直谐振器相比具有显着的频率和Q优点。 此外,该技术引入了金属电极,这大大降低了电极互连中的串联电阻,从而在增加微机械谐振器的功率处理能力的同时最大限度地减小了Q负载效应。

    Thin film resonators fabricated on membranes created by front side releasing
    234.
    发明授权
    Thin film resonators fabricated on membranes created by front side releasing 有权
    薄膜谐振器制造在由前端释放产生的膜上

    公开(公告)号:US06355498B1

    公开(公告)日:2002-03-12

    申请号:US09637069

    申请日:2000-08-11

    Abstract: A new bulk resonator may be fabricated by a process that is readily incorporated in the traditional fabrication techniques used in the fabrication of monolithic integrated circuits on a wafer. The resonator is decoupled from the wafer by a cavity etched under the resonator using selective etching through front openings (vias) in a resonator membrane. In a typical structure the resonator is formed over a silicon wafer by first forming a first electrode, coating a piezoelectric layer over both the electrode and the wafer surface and forming a second electrode opposite the first on the surface of the piezoelectric layer. After this structure is complete, a number of vias are etched in the piezoelectric layer exposing the surface under the piezoelectric layer to a selective etching process that selectively attacks the surface below the piezoelectric layer creating a cavity under the resonator.

    Abstract translation: 新的体谐振器可以通过容易地结合在晶片上制造单片集成电路中的传统制造技术中的工艺来制造。 谐振器通过使用谐振膜内的前开口(通孔)进行选择性蚀刻而在谐振器下方蚀刻的腔体与晶片分离。 在典型的结构中,谐振器通过首先形成第一电极而在硅晶片上形成,在电极和晶片表面上涂覆压电层,并形成与压电层表面上的第一电极相对的第二电极。 在该结构完成之后,在将压电层下方的表面暴露的压电层中蚀刻多个通孔至选择性蚀刻工艺,该选择性蚀刻工艺选择性地攻击压电层下方的表面,从而在谐振器下形成空腔。

    Method of making a micromechanical device from a single crystal
semiconductor substrate and monolithic sensor formed thereby
    235.
    发明授权
    Method of making a micromechanical device from a single crystal semiconductor substrate and monolithic sensor formed thereby 失效
    从单晶半导体基板和由此形成的单片传感器制造微机械装置的方法

    公开(公告)号:US6136630A

    公开(公告)日:2000-10-24

    申请号:US325204

    申请日:1999-06-03

    Abstract: A monolithic sensor including a doped mechanical structure is movably supported by but electrically isolated from a single crystal semiconductor substrate of the sensor through a relatively simple process. The sensor is preferably made from a single crystal silicon substrate using front-side release etch-diffusion. Thick single crystal Si micromechanical devices are combined with a conventional bipolar complimentary metal oxide semiconductor (BiCMOS) integrated circuit process. This merged process allows the integration of Si mechanical resonators as thick as 15 .mu.m thick or more with any conventional integrated circuit process with the addition of only a single masking step. The process does not require the use of Si on insulator wafers or any type of wafer bonding. The Si resonators are etched in an inductively coupled plasma source which allows deep trenches to be fabricated with high aspect ratios and smooth sidewall surfaces. Clamped-clamped beam Si resonators 500 .mu.m long, 5 .mu.m wide, and 11 .mu.m thick are disclosed. A typical resonator had a resonance frequency of 28.9 kHz and an amplitude of vibration at resonance of 4.6 .mu.m in air. Working NMOS transistors are fabricated on the same chip as the resonator with measured threshold voltages of 0.6 V and an output conductance of 2.0.times.10.sup.-5 .OMEGA..sup.-1 for a gage voltage of 4 V.

    Abstract translation: 包括掺杂机械结构的单片传感器通过相对简单的过程可移动地支撑,但是与传感器的单晶半导体衬底电隔离。 该传感器优选由使用前侧释放蚀刻扩散的单晶硅衬底制成。 厚单晶Si微机械器件与传统的双极互补金属氧化物半导体(BiCMOS)集成电路工艺相结合。 这种合并过程允许将Si机械谐振器与任何传统的集成电路工艺一样厚到15微米或更厚,只加上一个掩蔽步骤。 该方法不需要使用绝缘体上硅晶片或任何类型的晶片接合。 Si谐振器在电感耦合等离子体源中蚀刻,其允许以高纵横比和平滑的侧壁表面制造深沟槽。 公开了长500米,宽5微米,厚11微米的夹紧束式Si共振器。 典型的谐振器的共振频率为28.9kHz,共振振幅为4.6μm。 工作的NMOS晶体管制造在与谐振器相同的芯片上,其测量的阈值电压为0.6V,输出电导为2.0×10-5ΩEGA-1,对于量具电压为4V。

Patent Agency Ranking