Abstract:
Provided is a method for manufacturing a multi-layer wiring board and the multi-layer wiring board that are capable of suppressing variation in resistance values. The method according to the present invention is the method for manufacturing a multi-layer wiring board. The method includes forming a resistor thin film, measuring resistance distribution of the resistor thin film, calculating resistor width adjustment rates of the plurality of resistors according to the resistance distribution, forming a pattern of a protective film on the resistor thin film, in which the pattern of the protective pattern has pattern width according to the resistor width adjustment rate, forming a pattern of a plating film on the resistor thin film at a position exposed from the protective film, and etching the resistor thin film at a position exposed from the plating film and the protective film so as to pattern the resistor thin film.
Abstract:
A conductive via and method of forming a conductive via in a multilayer printed circuit board are disclosed. A hole is drilled into a printed circuit board that is reinforced with glass fibers, wherein the hole extends between two conductive elements on different layers of the printed circuit board and cuts through a portion of the glass fibers. A tungsten nitride layer is then deposited on the walls of the hole, wherein the tungsten nitride layer has a thickness between 1.5 nanometers and 20 nanometers. A copper layer is deposited over the tungsten nitride layer, wherein the copper and tungsten nitride form a conductive via that provides an electrically conductive pathway between the two conductive elements, and wherein the tungsten nitride layer isolates the copper layer from the glass fibers.
Abstract:
A transparent electrode sheet includes a transparent support having thereon patterned electrodes, and an absolute value of a difference between a reflection chromaticity of a surface of the electrode of far side from the transparent support and a reflection chromaticity of a surface of the electrode of near side to the transparent support is not more than 2.
Abstract:
The present invention provides a carrier-attached copper foil, wherein an ultrathin copper foil is not peeled from the carrier prior to the lamination to an insulating substrate, but can be peeled from the carrier after the lamination to the insulating substrate. A carrier-attached copper foil comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer, wherein the intermediate foil is configured with a Ni layer in contact with an interface of the copper foil carrier and a Cr layer in contact with an interface of the ultrathin copper layer, said Ni layer containing 1,000-40,000 μg/dm2 of Ni and said Cr layer containing 10-100 μg/dm2 of Cr is provided.
Abstract:
Methods and apparatuses are disclosed for fabricating a printed circuit board (PCB) having electromagnetic interference (EMI) shielding and also having reduced volume over conventional frame-and-shield approaches. Some embodiments include fabricating the PCB by mounting an integrated circuit to the PCB, outlining an area corresponding to the integrated circuit with a number of grounded vias, selectively applying an insulating layer over the PCB such that at least one of the grounded vias are exposed, and selectively applying a conductive layer over the PCB such that the conductive layer covers at least a portion of the integrated circuit and such that the conductive layer is coupled to the at least one of the grounded vias that are exposed.
Abstract:
A method for fabricating a heating a element includes modifying the surface state of a substrate in order to obtain at least one smooth area of low roughness and at least one rough area having a higher roughness; applying a highly electrically conductive material to these various areas; and connecting smooth area(s) of the conductive material to an electrical power source.
Abstract:
Object is to provide a surface-treated copper foil free from chromium in the surface-treatment layer and excellent in peel strength of a circuit and chemical resistance against to degradation of the peel strength after processing into a printed wiring board. To achieve the object, the surface-treated copper foil having a surface-treatment layer on a bonding surface of a copper foil for manufacturing a copper-clad laminate by laminating it to an insulating resin substrate has the surface-treatment layer formed by depositing a metal component having high melting point not lower than 1400° C. by dry process film formation method to the bonding surface of the copper foil after the cleaning treatment and further depositing a carbon component to the surface.
Abstract:
Disclosed herein are a thin film electrode ceramic substrate and a method for manufacturing the same. The thin film electrode ceramic substrate includes: a ceramic substrate; one or more anti-etching metal layers formed in a surface of the ceramic substrate; thin film electrode pattern formed on the anti-etching metal layers; and a plating layer formed on the thin film electrode pattern, wherein respective edge portions of the thin film electrode pattern are contacted with the anti-etching metal layer, and thus, an undercut defect occurring between the surface of the ceramic substrate and the thin film electrode pattern and between the thin film electrode patterns due to an etchant can be prevented and the binding strength of the entire thin film electrode pattern can be enhanced, resulting in securing durability and reliability of the thin film electrode patterns.
Abstract:
An apparatus and method for manufacturing a highly efficient flexible thin metal film-laminated strip by improves adhesiveness between a polyimide strip and a thin metal film, and removes stress from thin films laminated through magnetron sputtering, which is a dry deposition process. The stress-free flexible circuit board manufacturing method includes the steps of: a) depositing a seed layer on the substrate using the magnetron deposition source; b) depositing a compressive thin film using the single magnetron deposition source arranged next to the magnetron deposition source; c) depositing tensile thin film using the dual magnetron deposition source arranged next to the single magnetron deposition source; and d) repeating the steps b) and c) so as to sequentially and alternately deposit compressive thin films and tensile thin films thereby obtaining a thick film with a desired thickness.
Abstract:
A method for delineating a metallization pattern in a layer of sputtered aluminum or sputtered copper using a broad spectrum high intensity light source. The metal is deposited on a polymeric substrate by sputtering, so that it has a porous nanostructure. An opaque mask that is a positive representation of the desired metallization pattern is then situated over the metallization layer, exposing those portions of the metallization layer intended to be removed. The masked metallization layer is then exposed to a rapid burst of high intensity visible light from an arc source sufficient to cause complete removal of the exposed portions of the metallization layer, exposing the underlying substrate and creating the delineated pattern.