Abstract:
A system and method of correlating Raman measurements with digital images of a treated sample to classify the disease state of the sample. A spectroscopic data set is obtained for the sample positioned in the field of view of a spectroscopic device. Information about the field of view is stored. The sample is removed from the field of view and treated. The treated sample is repositioned in the field of view using the stored information. A digital image of the treated sample is obtained and the spectroscopic data set is linked with the digital image. A database is provided having a plurality of spectroscopic data sets. Each data set is linked to a corresponding digital image, and associated with the known sample. Each corresponding digital image is associated with the known treated samples. The database is searched to identify and match a data set of a known sample and the sample.
Abstract:
Novel spectrometer arrangements are described. They may employ a resin-based preconcentration system to sample chemical vapors. A field-widened interferometer modulates radiant energy. The signal generated by the interaction of the radiant energy with the sample is detected and processed by a computer. A variety of enhancements to the basic design are described, providing a family of related spectrometer designs. These spectrometers have applications in spectrometry, spectral imaging and metrology.
Abstract:
The invention relates generally to the field of substance and material detection, inspection, and classification at wavelengths between approximately 200 nm and approximately 1800 nm. In particular, a handheld Enhanced Photoemission Spectroscopy (“EPS”) detection system with a high degree of specificity and accuracy, capable of use at small and substantial standoff distances (e.g., greater than 12 inches) is utilized to identify specific substances (e.g., controlled substances, illegal drugs and explosives, and other substances of which trace detection would be of benefit) and mixtures thereof in order to provide information to officials for identification purposes and assists in determinations related to the legality, hazardous nature and/or disposition decision of such substance(s).
Abstract:
A pitch side optical system for use in diode laser spectroscopy consisting of more than one diode laser having select lasing frequencies with each diode laser being coupled to an end of a distinct input optical fiber. The pitch side optical system further consists of a multiplexer optically coupled to the other end of less than all of the input optical fibers with the multiplexer outputting multiplexed laser light to a pitch side optical fiber. The pitch side optical system further consists of a coupler optically coupled to the far end of the pitch side optical fiber and the far end of an unmultiplexed input optical fiber with the coupler combining the multiplexed laser light and the unmultiplexed laser light and outputting the combined light to a transmission optical fiber. Typically, the coupler is located near the combustion process. The pitch side optical system further consists of a pitch optic coupled to the transmission optical fiber. Typically, all optical fibers used in the pitch side optical system are single mode optical fibers.
Abstract:
A method of generating a design pattern for a spatial radiation modulator to encode two or more selected spectral components in one or more spectral ranges for the chemometric analysis of a group of analytes. The method includes obtaining a corresponding spectrum for each of the analytes, defining a set of initial spectral windows, constructing a chemometric matrix to relate concentrations of the analytes to intensities of the spectral components, deriving optimized spectral windows, and translating the center wavelength and the bandwidth of each of the optimized spectral windows into a corresponding optimized annular region on the modulator.
Abstract:
In preferred forms of the invention an array of MEMS mirrors or small mirrors inside an optical system operates closed-loop. These mirrors direct external source light, or internally generated light, onto an object—and detect light reflected from it onto a detector that senses the source. Local sensors measure mirror angles relative to the system. Sensor and detector outputs yield source location relative to the system. One preferred mode drives the MEMS mirrors, and field of view seen by the detector, in a raster, collecting a 2-D or 3-D image of the scanned region. Energy reaching the detector can be utilized to analyze object characteristics, or with an optional active distance-detecting module create 2- or 3-D images, based on the object's reflection of light back to the system. In some applications, a response can be generated. The invention can detect sources and locations for various applications.
Abstract:
An apparatus for the detection of spectral information along a geometrical line with a dispersive element, which is suspended from an axis of rotation, for the spectral dispersion of electromagnetic radiation from a range on the geometrical line into spectral constituents, a line detector for the detection of the spectral constituents of the radiation emanating from the range on the geometrical line and a dispersive-element deflector, the deflector being designed to deflect the dispersive element on the axis of rotation, so that depending on an angle of deflection a radiation from another range of the geometrical line is incident on the line detector.
Abstract:
An LED-based color measurement instrument including an illumination system and a sensing system. The illumination system includes modulated LEDs and a temperature control system for regulating the temperature of the LEDs, thereby improving the consistency of their performance. The sensing system includes a photodiode, a transimpedance amplifier, and an integrator in the first stage to cancel the effect of ambient light on the output of the first stage. The sensing system also includes a lens system for imaging a target area of the target sample onto the photo sensor in a manner so that the product of the target area times the solid angle captured by the lens system is generally uniform over a selected range of distances, thereby reducing the positional sensitivity of the instrument with respect to the target sample.
Abstract:
A sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
A system and method of correlating Raman measurements with digital images of a treated sample and using this correlation to classify the disease state of the sample. A spectroscopic data set is obtained for the sample positioned in the field of view of a spectroscopic device. The positional information about the field of view is stored. With the sample removed from the field of view, the sample is treated with a contrast enhancing agent. Using the stored positional information for the field of view, the treated sample is repositioned in the spectroscopic device's field of view. A digital image of the treated sample positioned in the field of view is obtained. The spectroscopic data set is linked with the digital image by defining a transformation to map the image spatial coordinates of the digital image to the spectral spatial coordinates of the spectroscopic data. A database having a plurality of spectroscopic data sets, for samples having well characterized pathology, is provided. Each spectroscopic data set is linked to a corresponding digital image, and each spectroscopic data set is associated with the known sample. Each corresponding digital image is associated with the known sample treated with a contrast enhancing agent. For the spectroscopic data set of the sample, the database is searched to identify a spectroscopic data set, of a known sample, matching the sample's spectroscopic data set.