Abstract:
An electron emission device includes a number of electron emission units spaced from each other, wherein each of the number of electron emission units includes a first electrode, a semiconductor layer, an electron collection layer, an insulating layer, and a second electrode stacked with each other, the electron collection layer is in contact with the semiconductor layer and the insulating layer, and the electron collection layer is a conductive layer.
Abstract:
An electron emission device includes a number of first electrodes and a number of second electrodes intersected with each other to define a number of intersections. An electron emission unit is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the electron emission unit includes a semiconductor layer and an insulating layer stacked together, the semiconductor layer defines a number of holes, the carbon nanotube layer covers the number of holes, and a portion of the carbon nanotube layer is suspended on the number of holes.
Abstract:
Devices and methods are described for a cathode having a plurality of apertures in an insulating layer, pits in a substrate layer, and emitters in the pit. The device can also have gate layer on top of the insulating layer which has an opening that is substantially aligned with the pit and the aperture. The emitter can be an array of substantially aligned carbon nanotubes. The device and method produces cathodes that are designed to avoid shorting of the cathode due to emitter-gate contact and other fabrication challenges.
Abstract:
A field-emission electron gun including an electron emission tip, an extractor anode, and a mechanism creating an electric-potential difference between the emission tip and the extractor anode. The emission tip includes a metal tip and an end cone produced by chemical vapor deposition on a nanofilament, the cone being aligned and welded onto the metal tip. The electron gun can be used for a transmission electron microscope.
Abstract:
A method for making carbon nanotube slurry is presented. At least one carbon nanotube film is provided, the at least one carbon nanotube film includes a plurality of carbon nanotubes oriented along substantially the same direction. A substrate is provided, and the at least one carbon nanotube film is attached to a surface of the substrate. The at least one carbon nanotube film is cut perpendicular the oriented direction of the carbon nanotubes with a laser to form a carbon nanotube belt. An inorganic binder and an organic carrier is provided, the carbon nanotube belt, the inorganic binder, and the organic carrier are mixed in an organic solvent to form a mixture. The organic solvent is removed.
Abstract:
Provided are a field emission device and a method of manufacturing the same. The field emission device includes an anode electrode and a cathode electrode which are opposite to each other, a counter layer provided on the anode electrode, and a field emitter provided on the cathode electrode and facing the counter layer. Herein, the field emitter includes a carbon nanotube emitting cold electrons and a photoelectric material emitting photo electrons.
Abstract:
An electron emission device and a method of manufacturing the same are provided. The electron emission device includes i) a hydrophilic resin substrate and ii) carbon nano tubes that are positioned on the resin substrate. Surface roughness Ra of the resin substrate is 7.3 μm to 9.75 μm.
Abstract:
The present disclosure includes field emission device embodiments. The present disclosure also includes method embodiments for forming field emitting devices. One device embodiment includes a housing defining an interior space including a lower portion and an upper portion, a cathode positioned in the lower portion of the housing, a elongate nanostructure coupled to the cathode, an anode positioned in the upper portion of the housing, and a control grid positioned between the elongate nanostructure and the anode to control electron flow between the anode and the elongate nanostructure.
Abstract:
Provided is an aggregate of carbon nanotubes satisfying (1) there is a 2θ peak at 24°±2° by X-ray powder diffraction analysis; (2) a height ratio (G/D ratio) of G band to D band by Raman spectroscopic analysis of wavelength 532 nm is 30 or more; and (3) a combustion peak temperature is from 550° C. to 700° C. The present invention provides an aggregate of carbon nanotubes excellent in dispersibility while high quality, giving a film, molded article, membrane or the like having excellent characteristics.
Abstract:
A driving method includes providing a field emission cathode device. The field emission cathode device includes a cathode electrode, an electron emission layer electrically connected to the cathode electrode, a first gate electrode spaced from the cathode electrode by a first dielectric layer, and a second grid electrode spaced from the first gate electrode by a second dielectric layer. The second dielectric layer has a second opening. A first voltage is supplied to the cathode electrode, a second voltage is supplied to the first gate electrode, and a third voltage is supplied to the second grid electrode, to extract electrons from the electron emission layer to a space formed by the second opening, until the electrons of the space saturate. The third voltage is greater than the second voltage, such that the electrons of the space are emitted through the second grid electrode.