Abstract:
Systems and methods are provided for shaping an effective transmission window used to select precursor ions for a precursor mass range of a sequential windowed acquisition experiment. For at least one precursor mass range, an ion transfer function is selected that is a function of mass using a processor. A quadrupole mass filter that transmits ions from a sample is instructed to produce two or more transmission windows over time using the processor. The two or more transmission windows are produced to cumulatively create an effective transmission window for the at least one precursor mass range with a shape described by the ion transfer function.
Abstract:
Systems and methods are provided for correcting uniform detector saturation. In one method, a mass analyzer analyzes N extractions of an ion beam. A nonzero amplitude from an ADC detector subsystem is counted as one ion, producing a count of one for each ion of each sub-spectrum. The ADC amplitudes and counts of the N sub-spectra are summed, producing a spectrum that includes a summed ADC amplitude and a total count for each ion of the spectrum. A probability that the total count arises from single ions hitting the detector is calculated. For each ion of the spectrum where the probability exceeds a threshold value, an amplitude response is calculated, producing amplitude responses for ions found to be single ions hitting the detector. Amplitude responses are combined, producing a combined amplitude response. The total count is dynamically corrected using the combined amplitude response and the summed ADC amplitude.
Abstract:
Dynamic skimmer pulsing and dynamic equilibration times are used for MS and MS/MS scans. A target percentage transmission of the ion beam is calculated based on a previous percentage transmission and a previous TIC or a previous highest intensity of a previous cycle time. An equilibration time is calculated based on the current percentage transmission and the target percentage transmission. A skimmer of a tandem mass spectrometer is controlled to attenuate the ion beam to the target percentage transmission to prevent saturation of a detector of the tandem mass spectrometer and to increase the dynamic range of the tandem mass spectrometer. The tandem mass spectrometer is controlled to perform an MS scan or an MS/MS scan after the calculated equilibration time to reduce the cycle time.
Abstract:
The resolution of a TOF mass analyzer is maintained despite a loss of resolution in one or more channels of a multichannel ion detection system by selecting the highest resolution channels for qualitative analysis. Ion packets that impact a multichannel detector are converted into multiplied electrons and emitted from two or more segmented electrodes that correspond to impacts in different regions across a length of the detector. The electrons received by each electrode of the two or more segmented electrodes for each ion packet are converted into digital values in a channel of a multichannel digitizer, producing digital values for at least two or more channels. Qualitative information about the ion packets is calculated using digital values of a predetermined subset of one or more channels of the at least two or more channels known to provide the highest resolution.
Abstract:
A system is disclosed for identifying a precursor ion of a product ion in a scanning DIA experiment. A precursor ion mass selection window is scanned across a precursor ion mass range of interest, producing a series of overlapping windows across the precursor ion mass range. Each overlapping window is fragmented and mass analyzed, producing a plurality of product ion spectra for the mass range. A product ion is selected from the spectra. Intensities for the selected product ion are retrieved for at least one scan across the mass range producing a trace of intensities versus precursor ion m/z. A matrix multiplication equation is created that describes how one or more precursor ions correspond to the trace for the selected product ion. The matrix multiplication equation is solved for one or more precursor ions corresponding to the selected product ion using a numerical method.
Abstract:
Two-channel electrical and photo-electrical TOF ion detection systems are provided. These systems maintain the resolution and dynamic range advantages of four-channel systems but at a lower cost. Electrodes or light pipes are configured to direct electrons or photons produced by ion impacts into two separate channels. The first channel receives electrons or photons resulting from the inner or central part of the rectangular pattern of each ion impact. The second channel receives electrons or photons resulting from the two outer ends of the rectangular pattern of each ion impact. In a two-channel digitizer, the first channel and the second channel are independently calibrated to align the first digital value and the second digital value in time and account for the convex shape of the ion impacts of each ion packet and/or the curvature of a microchannel plate.
Abstract:
A sample is ionized using an ion source and the ion beam is received using a tandem mass spectrometer. An m/z range is divided into two or more precursor ion isolation windows. Two or more values for a fragmentation parameter are selected. A first value of the two or more values for the fragmentation parameter has a level that fragments a minimal amount of ions of the ion beam. The one or more additional values have increasingly aggressive levels that produce increasingly more fragmentation of the ions of the ion beam. For each precursor ion isolation window, the tandem mass spectrometer is instructed to perform a selection and fragmentation of the ion beam using the precursor ion isolation window and the first value and is instructed to perform one or more additional selections and fragmentations of the ion beam using the precursor ion isolation window and using the one or more additional values.
Abstract:
A transmission window that has a constant rate of precursor ion transmission for each precursor ion is stepped across a mass range, producing a series of overlapping transmission windows across the mass range. The precursor ions produced at each step are fragmented. Resulting product ions are analyzed, producing a product ion spectrum for each step of the transmission window and a plurality of product ion spectra for the mass range. For at least one product ion of the plurality of product ion spectra, a function that describes how an intensity of the at least one product ion from the plurality of product ion spectra varies with precursor ion mass as the transmission window is stepped across the mass range is calculated. A precursor ion of the at least one product ion is identified from the function. An elution profile can also be determined from the function.
Abstract:
A sample is ionized using an ion source and the ion beam is received using a tandem mass spectrometer. An m/z range is divided into two or more precursor ion isolation windows. Two or more values for a fragmentation parameter are selected. A first value of the two or more values for the fragmentation parameter has a level that fragments a minimal amount of ions of the ion beam. The one or more additional values have increasingly aggressive levels that produce increasingly more fragmentation of the ions of the ion beam. For each precursor ion isolation window, the tandem mass spectrometer is instructed to perform a selection and fragmentation of the ion beam using the precursor ion isolation window and the first value and is instructed to perform one or more additional selections and fragmentations of the ion beam using the precursor ion isolation window and using the one or more additional values.
Abstract:
Systems and methods are used to band-pass filter ions from a mass range. A full spectrum is received for a full scan of a mass range using a tandem mass spectrometer. A mass selection window of the full spectrum is selected and a set of tuning parameter values is selected. The tandem mass spectrometer is instructed to perform a scan of the mass selection window using the set of tuning parameter values. A spectrum is received for the scan from the tandem mass spectrometer. A band-pass filtered spectrum is created for the mass range that includes values from the spectrum for the mass selection window of the mass range. Systems and methods are also used to band-pass filter ions from two or more mass selection windows across the mass range and to filter out ions from a mass selection window between two band-pass mass selection windows.