Abstract:
A method of manufacturing a microfluidic chip includes: irradiating, with a laser light, an area to be provided with a valley for storing a fluid on a surface of a substrate so as to form a modified region having a periodic pattern formed in a self-organizing manner in a light-collecting area of the laser light, the laser light having a pulse width for which the pulse duration is on the order of picoseconds or less; carrying out an etching treatment on the substrate in which the modified region is formed, removing at least some of the modified portion so as to provide the valley, and forming a periodic structure having a plurality of groove portions along one direction which have a surface profile based on the periodic pattern on at least a bottom surface of the valley; and forming a metal layer that covers the periodic structure of the bottom surface.
Abstract:
The invention relates to a component (4) of a biosensor, comprising at least one first device (6) for receiving a sample liquid, wherein the device (6) is connected via a distributor channel (7) to further receiving devices (8 to 11), into each of which a feed channel (71, 72, 73, 74) branching off from the distributor channel (7) opens, and the feed channels (71, 72, 73, 74) are arranged in succession in flow direction (S) of the sample liquid passed on through the distributor channel (7). In accordance with the invention, it is envisaged that, in the distributor channel (7), in each case between two immediately successive feed channels (71, 72; 72, 73; 73, 74) in flow direction (S), at least one region (K) for at least temporary slowing or stoppage of the capillary flow of the sample liquid has been inserted. It is thus possible to control the capillary flow of the sample liquid such that always only one receiving device (8, 9, 10, 11) is filled with the volume flow of sample liquid available before the next is filled, and effectively simultaneous filling of the receiving devices (8, 9, 10, 11) is prevented. This leads to rapid and complete filling of the respective receiving device (8, 9, 10, 11). Additionally presented is a process with which the regions (K) can be inserted into the distributor channel (7) in a simple manner.
Abstract:
Systems and methods for preparing freestanding films using laser-assisted chemical etch (LACE), and freestanding films formed using same, are provided. In accordance with one aspect a substrate has a surface and a portion defining an isotropically defined cavity; and a substantially continuous film is disposed at the substrate surface and spans the isotropically defined cavity. In accordance with another aspect, a substrate has a surface and a portion defining an isotropically defined cavity; and a film is disposed at the substrate surface and spans the isotropically defined cavity, the film including at least one of hafnium oxide (HfO2), diamond-like carbon, graphene, and silicon carbide (SiC) of a predetermined phase. In accordance with still another aspect, a substrate has a surface and a portion defining an isotropically defined cavity; and a multi-layer film is disposed at the substrate surface and spans the isotropically defined cavity.
Abstract:
The invention relates to a method for production of packaged electronic, in particular optoelectronic, components in a composite wafer, in which the packaging is carried out by fitting microframe structures of a cover substrate composed of glass, and the composite wafer is broken up along trenches which are produced in the cover substrate, and to packaged electronic components which can be produced using this method, comprising a composite of a mount substrate and a cover substrate, with at least one functional element and at least one bonding element, which makes contact with the functional element, being arranged on the mount substrate, with the cover substrate being a microstructured glass which is arranged on the mount substrate, and forms a cavity above the functional element, and with the bonding elements being located outside the cavity.
Abstract:
A method is for forming three-dimensional micro- and nanostructures, based on the structuring of a body of material by a mould having an impression area which reproduces the three-dimensional structure in negative form. This method includes providing a mould having a substrate of a material which can undergo isotropic chemical etching, in which the impression area is to be formed. An etching pattern is defined on (in) the substrate, having etching areas having zero-, uni- or bidimensional extension, which can be reached by an etching agent. A process of isotropic chemical etching of the substrate from the etching areas is carried out for a corresponding predetermined time, so as to produce cavities which in combination make up the impression area. The method is advantageously used in the fabrication of sets of microlenses with a convex three-dimensional structure, of the refractive or hybrid refractive/diffractive type, for forming images on different focal planes.
Abstract:
A method for forming a micro- or nano-pattern of a material on a substrate is presented. The method utilizes a buffer layer assisted laser patterning (BLALP). A layered structure is formed on the substrate, this layered structure being in the form of spaced-apart regions of the substrate defined by the pattern to be formed, each region including a weakly physisorbed buffer layer and a layer of the material to be patterned on top of the buffer layer. A thermal process is then applied to the layered structure to remove the remaining buffer layer in said regions, and thus form a stable pattern of said material on the substrate resulting from the buffer layer assisted laser patterning. The method may utilize either positive or negative lithography. The patterning may be implemented using irradiation with a single uniform laser pulse via a standard mask used for optical lithography.
Abstract:
The present disclosure relates to methods of treating a silicon substrate with an ultra-fast laser to create a getter material for example in a substantially enclosed MEMS package. In an embodiment, the laser treating comprises irradiating the silicon surface with a plurality of laser pulses adding gettering microstructure to the treated surface. Semiconductor based packaged devices, e.g. MEMS, are given as examples hereof.
Abstract:
A method is used for producing nanoscale and microscale devices in a variety of materials, such as silicon dioxide patterned buried films. The method is inexpensive and reliable for making small scale mechanical, optical, or electrical devices and relies upon the implantation of ions into a substrate and subsequent annealing to form a stoichiometric film with the device geometry is defined by the implant energy and dose and so is not limited by the usual process parameters.
Abstract:
For controlling a physical dimension of a solid state structural feature, a solid state structure is provided, having a surface and having a structural feature. The structure is exposed to a first periodic flux of ions having a first exposure duty cycle characterized by a first ion exposure duration and a first nonexposure duration for the first duty cycle, and then at a second periodic flux of ions having a second exposure duty cycle characterized by a second ion exposure duration and a second nonexposure duration that is greater than the first nonexposure duration, for the second duty cycle, to cause transport, within the structure including the structure surface, of material of the structure to the structural feature in response to the ion flux exposure to change at least one physical dimension of the feature substantially by locally adding material of the structure to the feature.
Abstract:
A structure having arbitrary rotational symmetry is produced by attaching a sample stage (turntable) to a precision rotational shaft that is continuously rotated as high precision, performing FIB deposition inside an FIB chamber while causing continuous rotation of the sample stage, or performing cut-way processing from a side surface or upper surface, like a general purpose lathe, using FIB etching.