Abstract:
A method of promoting combustion is provided by including an adjuvant for hydrocarbon fuels comprising a calcium based montmorillonite clay. The adjuvant is combined with the hydrocarbon fuel or with combustion air in an effective amount of about 2 X 10 5 to about 5 X 10 1 weight percent, based on the weight of the hydrocarbon fuel. Combustion efficiency is substantially improved and oxidation is substantially more complete, so that combustion products are produced in less noxious forms. In additions, the nature of slag or other deposits upon surfaces in a furnace or combustion chamber are substantially altered, so that corrosive conditions do not occur and the deposition of slag is prevented or materially reduced, and the ash is produced in a soft, friable form.
Abstract:
A multi-stage process for transforming a high sulfur ISO 8217 compliant Feedstock Heavy Marine Fuel Oil involving a core desulfurizing process that produces a Product Heavy Marine Fuel Oil that can be used as a feedstock for subsequent refinery process such as anode grade coking, needle coking and fluid catalytic cracking. The Product Heavy Marine Fuel Oil exhibits multiple properties desirable as a feedstock for those processes including a sulfur level has a maximum sulfur content (ISO 14596 or ISO 8754) between the range of 0.05 mass % to 1.0 mass. A process plant for conducting the process is also disclosed.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
An electrolyte as an additive for internal combustion engines for a production of hydrogen concentrations by a hydrogen generation device. A method of making the electrolyte includes weighing sodium borohydride, sodium hydroxide, and potassium hydride; adding the sodium hydroxide and the potassium hydride to deionized water to make a first composition; mixing the first composition; adding the sodium borohydride to the first composition to make a second composition; adding more deionized water to the second composition to make a basic electrolyte solution; diluting the basic electrolyte solution by adding more deionized water to make a third composition; and adding approximately 3 to 10 mL of sodium borohydride approximately 4.4008 M to the third composition to make an electrolyte having a final concentration sodium borohydride of approximately 0.05947 M.