SPIN-POLARIZED ELECTRON SOURCE AND SPIN-POLARIZED SCANNING TUNNELING MICROSCOPE
    22.
    发明申请
    SPIN-POLARIZED ELECTRON SOURCE AND SPIN-POLARIZED SCANNING TUNNELING MICROSCOPE 有权
    旋转极化电子源和旋转极化扫描隧道显微镜

    公开(公告)号:US20080073554A1

    公开(公告)日:2008-03-27

    申请号:US11559842

    申请日:2006-11-14

    Abstract: An exemplary spin-polarized electron source includes a cathode, and a one-dimensional nanostructure made of a compound (e.g., group III-V) semiconductor with local polarized gap states. The one-dimensional nanostructure includes a first end portion electrically connected with the cathode and a second end portion located/directed away from the cathode. The second end portion of the one-dimensional nanostructure functions as a polarized electron emission tip and is configured (i.e., structured and arranged) for emitting a spin-polarized electron current/beam under an effect of selectably one of a magnetic field induction and a circularly polarized light beam excitation when a predetermined negative bias voltage is applied to the cathode. Furthermore, a spin-polarized scanning tunneling microscope incorporating such a spin-polarized electron source is also provided.

    Abstract translation: 示例性的自旋极化电子源包括阴极和由具有局部极化间隙状态的化合物(例如III-V族)半导体制成的一维纳米结构。 一维纳米结构包括与阴极电连接的第一端部和位于/远离阴极的第二端部。 一维纳米结构的第二端部用作极化电子发射尖端,并且被配置(即,构造和布置),用于在可选择地对磁场感应和 当向阴极施加预定的负偏压时,圆偏振光束激发。 此外,还提供了包含这种自旋极化电子源的自旋极化扫描隧道显微镜。

    Method for fabricating field emission cathode, field emission cathode thereof, and field emission lighting source using the same
    24.
    发明授权
    Method for fabricating field emission cathode, field emission cathode thereof, and field emission lighting source using the same 有权
    场致发射阴极的制造方法,场发射阴极及使用其的场发射光源

    公开(公告)号:US09142376B2

    公开(公告)日:2015-09-22

    申请号:US13847884

    申请日:2013-03-20

    Abstract: A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.

    Abstract translation: 提供一种用于制造场发射阴极,场致发射阴极和场致发射光源的方法。 该方法包括:通过贵金属催化剂的自组装在阴极基板的表面上形成催化剂微晶核层,通过使用TCVD工艺在复合纳米碳材料上生长复合纳米碳材料,其中复合纳米碳材料包括 线圈碳纳米管和线圈碳纳米纤维。 总线圈碳纳米管和线圈碳纳米纤维的测量量高于40%。 通过上述方法制造场致发射阴极,场发射光源包括上述场发射阴极。

    CONDUCTIVE NANOSTRUCTURE, METHOD FOR MOLDING SAME, AND METHOD FOR MANUFACTURING A FIELD EMITTER USING SAME
    27.
    发明申请
    CONDUCTIVE NANOSTRUCTURE, METHOD FOR MOLDING SAME, AND METHOD FOR MANUFACTURING A FIELD EMITTER USING SAME 有权
    导电性纳米结构,其成型方法以及使用其制造场致发射体的方法

    公开(公告)号:US20130134860A1

    公开(公告)日:2013-05-30

    申请号:US13704902

    申请日:2011-02-23

    Abstract: The present invention relates to a conductive nanostructure, a method for molding the same, and a method for manufacturing a field emitter using the same. More particularly, the present invention relates to a field-emitting nanostructure comprising a conductive substrate, a conductive nanostructure arranged on the conductive substrate, and a conductive interfacial compound disposed in the interface between the conductive substrate and the conductive nanostructure, as well as to a method for molding the same, and a method for manufacturing a field emitter using the same.

    Abstract translation: 导电纳米结构体及其成型方法技术领域本发明涉及导电性纳米结构体,其成型方法及使用其的场致发射体的制造方法。 更具体地说,本发明涉及一种场致发射纳米结构,其包括导电衬底,布置在导电衬底上的导电纳米结构以及布置在导电衬底和导电纳米结构之间的界面中的导电界面化合物,以及一 其制造方法以及使用该场致发射体的制造方法。

    Photon enhanced thermionic emission
    29.
    发明申请
    Photon enhanced thermionic emission 有权
    光子增强热电子发射

    公开(公告)号:US20100139771A1

    公开(公告)日:2010-06-10

    申请号:US12589122

    申请日:2009-10-16

    CPC classification number: H01J40/06 H01J45/00 H01J2201/30434 H02S99/00

    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200° C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

    Abstract translation: 光子增强型热离子发射(PETE)被用于提高辐射能量转换效率。 一个热(大于200°C)的半导体阴极被照亮使其发射电子。 因为阴极是热的,在相同的照明条件下比在室温(或较冷)阴极发射的电子要大得多的发射电子。 作为这种增加的电子发射的结果,相对于常规光伏器件,能量转换效率可以显着增加。 在PETE中,阴极电子可以(并且通常被)相对于阴极热化。 因此,PETE不依赖于非热电子发射,并且比热载流子发射方法更容易实现。

    Apparatus and process for controlled nanomanufacturing using catalyst retaining structures
    30.
    发明申请
    Apparatus and process for controlled nanomanufacturing using catalyst retaining structures 有权
    使用催化剂保留结构的控制纳米制造的装置和方法

    公开(公告)号:US20100032313A1

    公开(公告)日:2010-02-11

    申请号:US12287478

    申请日:2008-10-09

    Applicant: Cattien Nguyen

    Inventor: Cattien Nguyen

    Abstract: An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.

    Abstract translation: 公开了一种使用催化剂保持结构控制制造纳米结构的装置和方法。 该装置包括一个或多个修饰的力显微镜,其具有连接到显微镜的尖端部分的纳米管。 电流从纳米管通过到基板的催化剂层,从而在与催化剂层相邻的抗蚀剂层中发生局部化学反应。 蚀刻发生化学反应的抗蚀剂层的区域,从而暴露由未蚀刻的抗蚀剂材料的壁包围的催化剂层中的催化剂颗粒或颗粒。 随后的化学气相沉积导致纳米结构的生长向上通过具有受控的高度和直径特性以及对于并行系统的数密度的未蚀刻抗蚀剂材料的壁而发生。

Patent Agency Ranking