Abstract:
The invention relates to a charged particle optical system comprising a beamlet generator for generating a plurality of charged particle beamlets, an electrostatic deflection system for deflecting the beamlets, and a projection lens system for directing the beamlets from the beamlet generator towards the target. The electrostatic deflection system comprises a first electrostatic deflector and a second electrostatic deflector for scanning charged particle beamlets over the target. The second electrostatic deflector is located behind the first electrostatic deflector so that, during operation of the system, a beamlet generated by the beamlet generator passes both of the electrostatic deflectors. During operation of the first and second electrostatic deflectors the system is adapted to apply voltages on the first electrostatic deflector and the second electrostatic deflector of opposite sign.
Abstract:
A technique for shaping a ribbon-shaped ion beam is disclosed. In one particular exemplary embodiment, the technique may be realized as an apparatus for shaping a ribbon-shaped ion beam. The apparatus may comprise an electrostatic lens having a substantially rectangular aperture for a ribbon-shaped ion beam to pass through, wherein a plurality of focusing elements are positioned along short edges of the aperture, and wherein each focusing element is separately biased and oriented to shape the ribbon-shaped ion beam.
Abstract:
A projection lens arrangement for a charged particle multi-beamlet system, the projection lens arrangement including one or more plates and one or more arrays of projection lenses. Each plate has an array of apertures formed in it, with projection lenses formed at the locations of the apertures. The arrays of projection lenses form an array of projection lens systems, each projection lens system comprising one or more of the projection lenses formed at corresponding points of the one or more arrays of projection lenses. The projection lens systems are arranged at a pitch in the range of about 1 to 3 times the diameter of the plate apertures, and each projection lens system is for demagnifying and focusing one or more of the charged particle beamlets on to the target plane, each projection lens system has an effective focal length in the range of about 1 to 5 times the pitch, and demagnifies the charged particle beamlets by at least 25 times.
Abstract:
The invention concerns a column for producing a focused particle beam comprising: a device (100) focusing particles including an output electrode (130) with an output hole (131) for allowing through a particle beam (A); an optical focusing device (200) for simultaneously focusing an optical beam (F) including an output aperture (230). The invention is characterized in that said output aperture (230) is transparent to the optical beam (F), while said output electrode (130) is formed by a metallic insert (130) maintained in said aperture (230) and bored with a central hole (131) forming said output orifice.
Abstract:
In order to implement faster high precision milling and high resolution image observation in the structure analysis and failure analysis of the MEMS and semiconductor devices, a two-lens optical system is mounted on a focused ion beam apparatus, and in the optical system the distance from an emitter apex in an ion source to an earth electrode included in a condenser lens and disposed nearest to the ion source is in the range of 5 to 14 mm.
Abstract:
The invention provides a multiple lens assembly 1 for a charged particle beam device which comprises at least two lens sub units 2, each sub unit having an optical axis 3, wherein at least two of the optical axes of the lens sub units are inclined to each other. Further, the invention provides a charged particle beam device which comprises at least one multiple lens assembly and a method for operating a charged particle beam device.
Abstract:
Provided is an ion implanter having a deceleration lens assembly comprising a plurality of electrodes in which one or more of the apertures of the deceleration electrodes are shaped in a manner which can improve performance of the ion implanter. In one embodiment, an electrode aperture is generally elliptical in shape and conforms generally to the shape of the beam passing through the aperture. In another aspect, an axis segment extends 40% of the length of the aperture from the aperture center to an intermediate point at the end of the segment. The average width of the aperture measured at each point from the center to the intermediate point is substantially less than the maximum width of the aperture.
Abstract:
A method and apparatus are disclosed for improving resolution and duty-cycle of a multi-reflecting TOF mass spectrometer (MR-TOF) by arranging a cylindrical analyzer having an appropriate radial deflection means, means for limiting ion divergence in the tangential direction and a pulsed source providing ion packet divergence of less than 1 mm*deg. There are disclosed embodiments for fifth-order focusing cylindrical ion minors. Separate embodiments provide parallel tandem MS-MS within a single cylindrical MR-TOF.
Abstract:
This composite charged particle beam device comprises a first charged particle beam column (6), a second charged particle beam column (1) which is equipped with a deceleration system, and is equipped with a detector (3) inside the column, a test piece stage (10) on which a test piece (9) is placed, and an electric field correction electrode (13) which is provided around the tip of the first charged particle beam column, wherein the electric field correction electrode is an electrode that corrects the electric field distribution formed in the vicinity of the test piece, and the electric field correction electrode is positioned between the test piece and the first charged particle beam column, and on the opposite side from the second charged particle beam column with respect to the optical axis of the first charged particle beam column.
Abstract:
A beam collimator includes a plurality of lens units that are arranged along a reference trajectory so that a beam collimated to the reference trajectory comes out from an exit of the beam collimator. Each of the plurality of lens units forms a bow-shaped curved gap and is formed such that an angle of a beam traveling direction with respect to the reference trajectory is changed by an electric field generated in the bow-shaped curved gap. A vacant space is provided between one lens unit of the plurality of lens units and a lens unit that is adjacent to the lens unit. The vacant space is directed in a transverse direction of the collimated beam in a cross section that is perpendicular to the reference trajectory. An inner field containing the reference trajectory is connected to an outer field of the plurality of lens units through the vacant space.